重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

01二分快速幂-创新互联

1、模幂运算

创新互联建站服务项目包括东阳网站建设、东阳网站制作、东阳网页制作以及东阳网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,东阳网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到东阳省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
  • 这里求  的  次幂(次方)对  取余数的计算,被称为模幂运算,本文会针对以上的式子,根据数据范围提供完全不同的算法来进行讲解,确保正确性的前提下,以求达到时间和空间的平衡;

  • 高端的算法往往只需要采用最朴素的诠释方式。

朴素算法

1)枚举

  • 直接一个  次的循环,枚举对  的  次乘法:

  • 最后进行取模运算(c++中的 '%' 符号等价于数学中的取模 mod);

  • c++代码实现如下:

int f(int a, int b, int c) {
    int ans = 1;
    while(b--)
        ans = ans * a;
    return ans % c;
}

这段代码有没有问题呢?

溢出问题:首先,在数据量比较大的时候,运算结果会出现负数,这是因为int 的取值范围是 [-2^31,2^31],超过后就会溢出,结果就和预期的不符了;

时间复杂度:其次,这个算法的时间复杂度是O(b)的,当b很大的时候,明显是无法满足时间要求的,尤其是写服务器代码的时候,时间复杂度尤为重要,10个、100个、1000 个玩家出现这样的计算时,时间消耗都是成倍增长的,非常占用服务器 CPU 资源;

那么,我们先保证正确性,确保计算过程中不会溢出,这里就需要用到数论里面一些简单的知识:模乘。

2) 模乘

模乘满足如下公式:

证明如下:

所以我们可以对朴素算法进行一些改进,改进如下:

int f(int a, int b, int c) {
    int ans = 1 % c;
    while(b--)
        ans = ans * a % c;
    return ans;
}

利用模乘运算,可以先模再乘,每次运算完毕确保数字是小于模数的,这样确保数字不会太大而造成溢出,但是这里没有考虑一种情况,就是  有可能是负数;

3) 负数考虑

需要再进行一次改进,改进版如下:

int f(int a, int b, int c) {
    a = (a % c + c) % c;
    int ans = 1 % c;
    while(b--)
        ans = ans * a % c;
    return ans;
}

我们发现只需要多加一句话:

a%c 是为了确保模完以后a的绝对值小于c,如图上图所示; 

再加上c是为了保证结果是正数,如上图所示;

最后又模上c是为了确保a是正数的情况也能准确让结果落在(0,c)的范围内,如上图所示;

这样改完还有哪些问题呢???

1、溢出问题:溢出问题仍然存在,只要c的范围是 [-2^31,2^31],ans和a的范围就在(0,c) ,ans*a的范围就是(0,c^2) ,最坏情况就是(0,2^62) ,还是超过了int的范围;

2、时间复杂度:时间复杂度仍然是O(b)的,而且每次都有一个取模运算,常数时间变大了;

为了改善溢出问题,我们可以在相乘的时候转成long long来避免,c++ 代码实现如下:

int f(int a, int b, int c) {
    a = (a % c + c) % c;
    int ans = 1 % c;
    while(b--)
        ans = (long long)ans * a % c;
    return ans;
}

溢出问题暂且告一段落,接下来让我们考虑下如何改善时间复杂度的问题(也许有人会问,如果c模数的范围是long long,   又该怎么办呢?);

2、循环节

1) 小数据分析

2)算法实现

算法时间复杂度为O(K) ;

基于K的不确定性,并且时间复杂度应该是算最坏情况下的,所以这个算法的实际时间复杂度是O(c);

c++代码实现如下:

#define MAXN 100005
int F[MAXN+1], FPos[MAXN+1];
int f(int a, int b, int c) {
    memset(FPos, -1, sizeof(FPos));
    F[0] = 1 % c;
    FPos[ F[0] ] = 0;
    for(int i = 1; i<= b; ++i) {
        F[i] = F[i-1] * a % c;
        int &pre =  FPos[ F[i] ];
        if( pre == -1) {
            pre = i;
        }else {
            int K = i - pre;
            int Index = ( b - pre ) % K + pre;
            return F[Index];
        }
    }
    return F[b];
}
2、二分快速幂

1) 递归实现
#define ll long long
ll f(ll a, ll b, ll c) {
    if (b == 0)
        return 1 % c;
    ll v = f(a*a % c, (b>>1), c);
    if (b & 1)
        v = v * a % c;
    return v;
}
  • 代码实现非常简单,根据 c++ 整数除法是取下整的特性,偶数和奇数的除法可以统一处理,然后用位运算进行一部分优化;

  • 1)右移一位相当于 除2;

  • 2)位与(&) 1 用于判断奇偶性;

2) 二进制优化实现

c++ 代码实现如下

#define ll long long
ll f(ll a, ll b, ll c){
    ll ans = 1;
    while(b) {
        if(b & 1) ans = ans * a % c;     // 1)
        a = a * a % c;                   // 2)
        b >>= 1;                         // 3)
    }
    return ans;
}
  • 1)和 3)是配合着做的,检查n的第i位二进制低位否是1,如果是则乘上对应的a次幂:a^(ni)其中ni=2^i;

  • 2)依次求出a1 a2 a4 a8........;

  • 这个算法的时间复杂度为O(logb),相比递归算法减少了一些常数消耗;

3、模数为 64 位整数

c++ 代码实现如下

#define ll long long
ll Product_Mod(ll a, ll b, ll c) {
    ll sum = 0;
    while(b) {
        if(b & 1) sum = (sum + a) % c;
        a = (a + a) % c;
        b >>= 1;
    }
    return sum;
}
ll f(ll a, ll b, ll c) {
    ll ans = 1;
    while(b) {
        if(b & 1) sum = Product_Mod(sum, a, c);
        a = Product_Mod(a, a, c);
        b >>= 1;
    }
    return ans;
}
4、时间复杂度总结

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧


标题名称:01二分快速幂-创新互联
标题来源:http://cqcxhl.cn/article/ceegco.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP