重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。
创新互联网站建设服务商,为中小企业提供成都网站建设、成都网站制作服务,网站设计,网站托管运营等一站式综合服务型公司,专业打造企业形象网站,让您在众多竞争对手中脱颖而出创新互联。
首先介绍一下GMP什么意思:
G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。
M ---------- thread内核级线程,所有的G都要放在M上才能运行。
P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。
Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行
模型图:
避免频繁的创建、销毁线程,而是对线程的复用。
1)work stealing机制
当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。
2)hand off机制
当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:
如果有空闲的P,则获取一个P,继续执行G0。
如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。
如下图
GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行
在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。
具体可以去看另一篇文章
【Golang详解】go语言调度机制 抢占式调度
当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。
协程经历过程
我们创建一个协程 go func()经历过程如下图:
说明:
这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。
G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;
一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G
上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。
work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。
如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。
Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:
用户态阻塞/唤醒
当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。
系统调用阻塞
当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。
队列轮转
可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
M0
M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了
G0
G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0
一个G由于调度被中断,此后如何恢复?
中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。
我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码
参考: ()
()
一、关于连接池
一个数据库服务器只拥有有限的资源,并且如果你没有充分使用这些资源,你可以通过使用更多的连接来提高吞吐量。一旦所有的资源都在使用,那么你就不 能通过增加更多的连接来提高吞吐量。事实上,吞吐量在连接负载较大时就开始下降了。通常可以通过限制与可用的资源相匹配的数据库连接的数量来提高延迟和吞 吐量。
如何在Go语言中使用Redis连接池
如果不使用连接池,那么,每次传输数据,我们都需要进行创建连接,收发数据,关闭连接。在并发量不高的场景,基本上不会有什么问题,一旦并发量上去了,那么,一般就会遇到下面几个常见问题:
性能普遍上不去
CPU 大量资源被系统消耗
网络一旦抖动,会有大量 TIME_WAIT 产生,不得不定期重启服务或定期重启机器
服务器工作不稳定,QPS 忽高忽低
要想解决这些问题,我们就要用到连接池了。连接池的思路很简单,在初始化时,创建一定数量的连接,先把所有长连接存起来,然后,谁需要使用,从这里取走,干完活立马放回来。 如果请求数超出连接池容量,那么就排队等待、退化成短连接或者直接丢弃掉。
二、使用连接池遇到的坑
最近在一个项目中,需要实现一个简单的 Web Server 提供 Redis 的 HTTP interface,提供 JSON 形式的返回结果。考虑用 Go 来实现。
首先,去看一下 Redis 官方推荐的 Go Redis driver。官方 Star 的项目有两个:Radix.v2 和 Redigo。经过简单的比较后,选择了更加轻量级和实现更加优雅的 Radix.v2。
Radix.v2 包是根据功能划分成一个个的 sub package,每一个 sub package 在一个独立的子目录中,结构非常清晰。我的项目中会用到的 sub package 有 redis 和 pool。
由于我想让这种被 fork 的进程最好简单点,做的事情单一一些,所以,在没有深入去看 Radix.v2 的 pool 的实现之前,我选择了自己实现一个 Redis pool。(这里,就不贴代码了。后来发现自己实现的 Redis pool 与 Radix.v2 实现的 Redis pool 的原理是一样的,都是基于 channel 实现的, 遇到的问题也是一样的。)
不过在测试过程中,发现了一个诡异的问题。在请求过程中经常会报 EOF 错误。而且是概率性出现,一会有问题,一会又好了。通过反复的测试,发现 bug 是有规律的,当程序空闲一会后,再进行连续请求,会发生3次失败,然后之后的请求都能成功,而我的连接池大小设置的是3。再进一步分析,程序空闲300秒 后,再请求就会失败,发现我的 Redis server 配置了 timeout 300,至此,问题就清楚了。是连接超时 Redis server 主动断开了连接。客户端这边从一个超时的连接请求就会得到 EOF 错误。
然后我看了一下 Radix.v2 的 pool 包的源码,发现这个库本身并没有检测坏的连接,并替换为新server{location/pool{content_by_lua_block{localredis=require"resty.redis"localred=redis:new()localok,err=red:connect("127.0.0.1",6379)ifnotokthenngx.say("failedtoconnect:",err)returnendok,err=red:set("hello","world")ifnotokthenreturnendred:set_keepalive(10000,100)}}}
发现有个 set_keepalive 的方法,查了一下官方文档,方法的原型是 syntax: ok, err = red:set_keepalive(max_idle_timeout, pool_size) 貌似 max_idle_timeout 这个参数,就是我们所缺少的东西,然后进一步跟踪源码,看看里面是怎么保证连接有效的。
function_M.set_keepalive(self,...)localsock=self.sockifnotsockthenreturnnil,"notinitialized"endifself.subscribedthenreturnnil,"subscribedstate"endreturnsock:setkeepalive(...)end
至此,已经清楚了,使用了 tcp 的 keepalive 心跳机制。
于是,通过与 Radix.v2 的作者一些讨论,选择自己在 redis 这层使用心跳机制,来解决这个问题。
四、最后的解决方案
在创建连接池之后,起一个 goroutine,每隔一段 idleTime 发送一个 PING 到 Redis server。其中,idleTime 略小于 Redis server 的 timeout 配置。连接池初始化部分代码如下:
p,err:=pool.New("tcp",u.Host,concurrency)errHndlr(err)gofunc(){for{p.Cmd("PING")time.Sleep(idelTime*time.Second)}}()
使用 redis 传输数据部分代码如下:
funcredisDo(p*pool.Pool,cmdstring,args...interface{})(reply*redis.Resp,errerror){reply=p.Cmd(cmd,args...)iferr=reply.Err;err!=nil{iferr!=io.EOF{Fatal.Println("redis",cmd,args,"erris",err)}}return}
其中,Radix.v2 连接池内部进行了连接池内连接的获取和放回,代码如下:
//Cmdautomaticallygetsoneclientfromthepool,executesthegivencommand//(returningitsresult),andputstheclientbackinthepoolfunc(p*Pool)Cmd(cmdstring,args...interface{})*redis.Resp{c,err:=p.Get()iferr!=nil{returnredis.NewResp(err)}deferp.Put(c)returnc.Cmd(cmd,args...)}
这样,我们就有了 keepalive 的机制,不会出现 timeout 的连接了,从 redis 连接池里面取出的连接都是可用的连接了。看似简单的代码,却完美的解决了连接池里面超时连接的问题。同时,就算 Redis server 重启等情况,也能保证连接自动重连。
之前写过了Go语言gorm框架MySQL实践,其中对gorm框架在操作MySQL的各种基础实践,下面分享一下如何使用gorm框架对MySQL直接进行性能测试的简单实践。
这里我使用了一个原始的Go语言版本的 FunTester 测试框架,现在只有一个基本的方法,实在是因为Go语言特性太强了。框架设计的主要思路之一就是利用Go语言的闭包和方法参数特性,将一个 func() 当做性能测试的主题,通过不断运行这个 func() 来实现性能测试。当然还有另外一个思路就是运行一个多线程任务类,类似 Java 版本的 com.funtester.base.constaint.ThreadBase 抽象类,这样可以设置一些类的属性,绑定一些测试资源,适配更多的测试场景。
下面演示select的性能测试,这里我用了随机ID查询的场景。
这里我使用从35开始递增的ID进行删除。
这里使用了select的用例部分,随机ID,然后更新name字段,随机10个长度的字符串。
这里用到了 FunTester 字段都是随机生成。
到这里可以看出,性能测试框架用到的都是gorm框架的基础API使用,这里MySQL连接池的管理工作完全交给了gorm框架完成,看资料说非常牛逼,我们只需要设置几个参数。这个使用体现很像 HttpClient 设置 HTTP 连接池类似,这里我们也可以看出这些优秀的框架使用起来都是非常简单的。
PS:关于gorm的基础使用的请参考上一期的文章Go语言gorm框架MySQL实践。
首选,如果之前使用过redis容器,我们需要先remove掉之前的容器
然后创建redis容器,并运行
进入redis容器中
接着我们通过 redis-cli 连接测试使用 redis 服务
setex指令 可以设置数据存在的时间, setex key second value
MSET 一次设置多个key-value
MGET一次获取多个key-value
HGET
HGETALL
Hlen和hexist
Lpush 和 Lrange
Lpop和Rpop 从链表取出并移走数据
删除链表所有数据 DEL
字符串无序 不能重复
从连接池中Get出一个conn连接