重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python中进行矩阵运算的方法-创新互联

创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册、网络空间、营销软件、网站建设、襄州网站维护、网站推广。

这篇文章将为大家详细讲解有关python中进行矩阵运算的方法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。

numpy的导入和使用

from numpy import *;#导入numpy的库函数
import numpy as np; #这个方式使用numpy的函数时,需要以np.开头。

矩阵的创建

由一维或二维数据创建矩阵

>>> from numpy import *
>>> a1=array([1,2,3])
>>> a1
array([1, 2, 3])
>>> a1=mat(a1)
>>> a1
matrix([[1, 2, 3]])
>>> shape(a1)
(1, 3)
>>> b=matrix([1,2,3])
>>> shape(b)
(1, 3)

常见的矩阵运算

1. 矩阵相乘

>>>a1=mat([1,2]);      
>>>a2=mat([[1],[2]]);
>>>a3=a1*a2 #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵
>>> a3
matrix([[5]])

2. 矩阵点乘

矩阵对应元素相乘

>>>a1=mat([1,1]);
>>>a2=mat([2,2]);
>>>a3=multiply(a1,a2)
>>> a3
matrix([[2, 2]])

矩阵点乘

>>>a1=mat([2,2]);
>>>a2=a1*2
>>>a2
matrix([[4, 4]])

3、矩阵求逆,转置 
矩阵求逆

>>>a1=mat(eye(2,2)*0.5)
>>> a1
matrix([[ 0.5,  0. ],
        [ 0. ,  0.5]])
>>>a2=a1.I  #求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵
>>> a2
matrix([[ 2.,  0.],
        [ 0.,  2.]])

矩阵转置

>>> a1=mat([[1,1],[0,0]])
>>> a1
matrix([[1, 1],
        [0, 0]])
>>> a2=a1.T
>>> a2
matrix([[1, 0],
        [1, 0]])

4.计算矩阵对应行列的大、最小值、和。

>>>a1=mat([[1,1],[2,3],[4,2]])
>>> a1
matrix([[1, 1],
        [2, 3],
        [4, 2]])

计算每一列、行的和

>>>a2=a1.sum(axis=0) #列和,这里得到的是1*2的矩阵
>>> a2
matrix([[7, 6]])
>>>a3=a1.sum(axis=1) #行和,这里得到的是3*1的矩阵
>>> a3
matrix([[2],
        [5],
        [6]])
>>>a4=sum(a1[1,:])  #计算第一行所有列的和,这里得到的是一个数值
>>> a4
5                    #第0行:1+1;第2行:2+3;第3行:4+2

关于python中进行矩阵运算的方法就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。


分享标题:python中进行矩阵运算的方法-创新互联
当前链接:http://cqcxhl.cn/article/ddepop.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP