重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!
创新互联专业为企业提供奉新网站建设、奉新做网站、奉新网站设计、奉新网站制作等企业网站建设、网页设计与制作、奉新企业网站模板建站服务,十余年奉新做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。本篇文章给大家分享的是有关什么是python数据科学库,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
Python是门很神奇的语言,历经时间和实践检验,受到开发者和数据科学家一致好评,目前已经是全世界发展最好的编程语言之一。简单易用,完整而庞大的第三方库生态圈,使得Python成为编程小白和高级工程师的选。
在本文中,我们会分享不同于市面上的python数据科学库(如numpy、padnas、scikit-learn、matplotlib等),尽管这些库很棒,但是其他还有一些不为人知,但同样优秀的库需要我们去探索去学习。
1、wget
从网络上获取数据被认为是数据科学家的必备基本技能,而Wget是一套非交互的基于命令行的文件下载库。ta支持HTTP、HTTPS和FTP协议,也支持使用IP代理。因为ta是非交互的,即使用户未登录,ta也可以在后台运行。所以下次如果你想从网络上下载一个页面,Wget可以帮到你哦。
安装
pip isntall wget
实例
import wget url = 'http://www.futurecrew.com/skaven/song_files/mp3/razorback.mp3' filename = wget.download(url)
Run and output
100% [................................................] 3841532 / 3841532 filename 'razorback.mp3'
2. Pendulum
对于大多数python用户来说处理时期(时间)数据是一件令人抓狂的事情,好在Pendulum专为你而来。它是python内置时间类的良好备选方案,更多内容可查看官方文档 https://pendulum.eustace.io/docs/
安装
pip install pendulum
实例
import pendulum dt_toronto = pendulum.datetime(2012, 1, 1, tz='America/Toronto') dt_vancouver = pendulum.datetime(2012, 1, 1, tz='America/Vancouver') print(dt_vancouver.diff(dt_toronto).in_hours())
Run and output
3
3.imbalanced-learn
常见的机器学习分类算法都默认输入的数据是均衡数据,即假设训练集数据有A和B两个类别,A和B数据量大体相当。如果A和B数据量差别巨大,那么训练的效果会不理想。在实际收集和整理的数据,其实绝大多数是非均衡数据,这对于机器学习分类算法真的是个很大的问题。好在有imbalanced-learn库可以很好的解决这个问题。该库兼容scikit-learn,并且是作为scikit-learn-contrib项目的一部分。当你再遇到非均衡数据,记得试试它哦!
安装
pip install -U imbalanced-learn #或者 conda install -c conda-forge imbalanced-learn
4. FlashText
在NLP任务重经常会遇到替换指代同一个意思的多个词语,或者从句子中抽取关键词。通常我们一般的做法是使用正则表达式来完成这些脏活累活,但如果要操作的词语数量达到几千上万,使用正则这种方法就会变得很麻烦。FlashText库是基于FlashText算法,该库的最强大之处在于程序运行时间不受操作词语数量影响,即运行时间与操作的词汇数量无关。 因此特别适合应用到 python文本分析 中去。
安装
pip install flashtext
实例
抽取关键词
我们都知道 Big Apple 指代纽约。所以抽取纽约这个城市词时候,我们要考虑到相同意思的不同词语。
from flashtext import KeywordProcessor #设置关键词处理器 keyword_processor = KeywordProcessor() #设置关键词及其近义词 keyword_processor.add_keyword('Big Apple', 'New York') #遇到Big Apple就会识别为New York keyword_processor.add_keyword('Bay Area') keywords_found = keyword_processor.extract_keywords("I love Big Apple and Bay Area.") keywords_found
Run and output
['New York', 'Bay Area']
5. Fuzzywuzzy
这个库的名字就有点怪,但ta拥有强大的字符串匹配功能。可以轻松实现字符串比较比率(comparison ratios),分词比率(token ratios)等操作。它还可以方便地匹配保存在不同数据库中的记录。
安装
pip install fuzzywuzzy
实例
from fuzzywuzzy import fuzz from fuzzywuzzy import process # Simple Ratio print(fuzz.ratio("this is a test", "this is a test!")) # Partial Ratio print(fuzz.partial_ratio("this is a test", "this is a test!"))
Run and output!
97 100
以上就是什么是python数据科学库,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联-成都网站建设公司行业资讯频道。