重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
递归函数有三点要求:
目前创新互联已为近千家的企业提供了网站建设、域名、虚拟主机、网站运营、企业网站设计、安阳网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
1,递归的终止点,即递归函数的出口
2,不断的递归调用自身
3,递归函数主体内容,即递归函数需要做的事情
ps:3一般可以放在2的前面或者后面,一般1放最前面。另外,2和3可以根据不同的需要合并,比如,有时候递归函数的主体就是返回调用下层函数所得到的结果。
具体例子如下:
void fun(int n)
{
if(n=0) return; //1 这是递归的终点,即出口
fun(n-1); //2、递归函数自身的调用
coutnendl; //3 递归函数的主体内容
}
2,3合并的情况
int fun(int n)
{
if(n=0) return 0;
return fun(n-1)+fun(n-2); //2 3合并
}
1、用在出口条件上
if(n==1) return x;
if(n1) x=(x+1)*fun(x,n-1);正确可以实现递归功能
2、用在出口条件和继续递归的调用上(实际上还是在出口条件)
if(n==1) return x;
if(x1) return (x+1)*fun(x,n-1);正确这个也可以实现递归功能
3、在设置一个值,用这个值来判断,最终还是能实现递归
int m;
if(n==1) m=x;
if (n1) m=(x+1)*fun(x,n-1);
return m;
万变不离其踪,return 永远用在函数的出口条件上,没有return就死循环了不是么?
递归具体用法其实就是让你把一个问题分解成很多个类似的情况,虽然你要解决这个问题非常难,莫名其妙,要你想几年,但是把他一直递归分解,就变成很好理解的单种情况,而你整个问题又是跟这个单种情况类似,把整个问题通过递归调用一层一层分解到最低级简单的那种情况,就是你所需要理解的了。
一个函数在它的函数体内调用它自身称为递归调用。这种函数称为递归函数。C语言允许函数的递归调用。在递归调用中,主调函数又是被调函数。执行递归函数将反复调用其自身,每调用一次就进入新的一层。
(引自谭浩强的C语言书里)
用递归法计算n!可用下述公式表示:
n!=1 (n=0,1)
n×(n-1)! (n1)
具体如下long ff(int n)
{
long f;
if(n0) printf("n0,input error");
else if(n==0||n==1) f=1;
else f=ff(n-1)*n;
return(f);
}
main()
{
int n;
long y;
printf("\ninput a inteager number:\n");
scanf("%d",n);
y=ff(n);
printf("%d!=%ld",n,y);
}
较难题:一块板上有三根针,A,B,C。A针上套有64个大小不等的圆盘,大的在下,小的在上。如图5.4所示。要把这64个圆盘从A针移动C针上,每次只能移动一个圆盘,移动可以借助B针进行。但在任何时候,任何针上的圆盘都必须保持大盘在下,小盘在上。求移动的步骤。
具体如下move(int n,int x,int y,int z)
{
if(n==1)
printf("%c--%c\n",x,z);
else
{
move(n-1,x,z,y);
printf("%c--%c\n",x,z);
move(n-1,y,x,z);
}
}
main()
{
int h;
printf("\ninput number:\n");
scanf("%d",h);
printf("the step to moving %2d diskes:\n",h);
move(h,'a','b','c');
}
从程序中可以看出,move函数是一个递归函数,它有四个形参n,x,y,z。n表示圆盘数,x,y,z分别表示三根针。move 函数的功能是把x上的n个圆盘移动到z上。当n==1时,直接把x上的圆盘移至z上,输出x→z。如n!=1则分为三步:递归调用move函数,把n-1个圆盘从x移到y;输出x→z;递归调用move函数,把n-1个圆盘从y移到z。在递归调用过程中n=n-1,故n的值逐次递减,最后n=1时,终止递归,逐层返回。当n=4 时程序运行的结果为:
所谓递归,说的简单点,就是函数自己调用自己,然后在某个特定条件下。结束这种自我调用。
如果不给予这个结束条件,就成了无限死循环了。这样这个递归也就毫无意义了。
如下面问题
1 1 2 3 5 8 13 21 ........n
分析可以看出, i 表示第几个数, n 表示该数的值
当i = 1 时, n = 1;
当i = 2 时, n = 1;
当i = 3 时 n = i1 + i2;
当i = 4 时 n = i2 + i3
所以可以写个函数
int fun(int n) // 这里的n代表第几个数
{
if(1 == n || 2 == n) // 第一个数
{
return 1;
}
else
{
return fun(n - 1) + fun(n - 2); // 这里就是自己调用自己,形成循环自我调用。
}
}
注: 以上代码只是用来演示递归,不包含错误校验。
在实际生产过程中。该代码不够健壮。
如此,就完成了递归。你就可以求得第n个数了。
何时考虑使用递归。
当你分析一个问题的时候,发现这个问题,是一个自我循环时,而且这个自我循环到一个给定值,就可以终止的时候,你就快要考虑递归了。