重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章给大家介绍Hook 钩子函数在Python中的作用有哪些,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
成都创新互联公司专注于企业全网整合营销推广、网站重做改版、凤阳网站定制设计、自适应品牌网站建设、H5网站设计、商城网站制作、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为凤阳等各大城市提供网站开发制作服务。1. 什么是Hook
经常会听到钩子函数(hook function)这个概念,最近在看目标检测开源框架mmdetection,里面也出现大量Hook的编程方式,那到底什么是hook?hook的作用是什么?
从上面可知
本文用python来解释hook的实现方式,并展示在开源项目中hook的应用案例。hook函数和我们常听到另外一个名称:回调函数(callback function)功能是类似的,可以按照同种模式来理解。
2. hook实现例子
据我所知,hook函数最常使用在某种流程处理当中。这个流程往往有很多步骤。hook函数常常挂载在这些步骤中,为增加额外的一些操作,提供灵活性。
下面举一个简单的例子,这个例子的目的是实现一个通用往队列中插入内容的功能。流程步骤有2个
需要再插入队列前,对数据进行筛选input_filter_fn
插入队列insert_queue
class ContentStash(object): """ content stash for online operation pipeline is 1. input_filter: filter some contents, no use to user 2. insert_queue(redis or other broker): insert useful content to queue """ def __init__(self): self.input_filter_fn = None self.broker = [] def register_input_filter_hook(self, input_filter_fn): """ register input filter function, parameter is content dict Args: input_filter_fn: input filter function Returns: """ self.input_filter_fn = input_filter_fn def insert_queue(self, content): """ insert content to queue Args: content: dict Returns: """ self.broker.append(content) def input_pipeline(self, content, use=False): """ pipeline of input for content stash Args: use: is use, defaul False content: dict Returns: """ if not use: return # input filter if self.input_filter_fn: _filter = self.input_filter_fn(content) # insert to queue if not _filter: self.insert_queue(content) # test ## 实现一个你所需要的钩子实现:比如如果content 包含time就过滤掉,否则插入队列 def input_filter_hook(content): """ test input filter hook Args: content: dict Returns: None or content """ if content.get('time') is None: return else: return content # 原有程序 content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}} content_stash = ContentStash('audit', work_dir='') # 挂上钩子函数, 可以有各种不同钩子函数的实现,但是要主要函数输入输出必须保持原有程序中一致,比如这里是content content_stash.register_input_filter_hook(input_filter_hook) # 执行流程 content_stash.input_pipeline(content)