重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

PYTHON中创造函数 Python 构造函数

如何在Python中创建一个CFUNCTYPE-python,回调callback,ctypes

1. 我忘了ctypes的操作方法是:

专注于为中小企业提供成都网站建设、网站设计服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业德兴免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了近1000家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

下面是从复制

因此,我们的回调函数接收整型指针,并且必须返回一个整数。首先,我们创建了回调函数的类型:

CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))

对于优先个回调函数中,我们简单地打印出我们得到,并返回0(;-):

def py_cmp_func(a, b):

print "py_cmp_func", a, b

return 0

创建C可调用的回调函数:

cmp_func = CMPFUNC(py_cmp_func)

python新手求助 创建一个叫mess的函数,当语句里有rstvwxyz的时候改成大写,单词之间

def mess( strInput ):

strOut = ''

for ch in strInput:

if ch == ' ': strOut += '-'

elif ch in 'rstvwxyz': strOut += ch.upper()

else: strOut += ch

return strOut

详解Python中的__new__、__init__、__call__三个特殊方法

__new__: 对象的创建,是一个静态方法,第一个参数是cls。(想想也是,不可能是self,对象还没创建,哪来的self)

__init__ : 对象的初始化, 是一个实例方法,第一个参数是self。

__call__ : 对象可call,注意不是类,是对象。

先有创建,才有初始化。即先__new__,而后__init__。

上面说的不好理解,看例子。

1.对于__new__

可以看到,输出来是一个Bar对象。

__new__方法在类定义中不是必须写的,如果没定义,默认会调用object.__new__去创建一个对象。如果定义了,就是override,可以custom创建对象的行为。

聪明的读者可能想到,既然__new__可以custom对象的创建,那我在这里做一下手脚,每次创建对象都返回同一个,那不就是单例模式了吗?没错,就是这样。可以观摩《飘逸的python - 单例模式乱弹》

定义单例模式时,因为自定义的__new__重载了父类的__new__,所以要自己显式调用父类的__new__,即object.__new__(cls, *args, **kwargs),或者用super()。,不然就不是extend原来的实例了,而是替换原来的实例。

2.对于__init__

使用Python写过面向对象的代码的同学,可能对 __init__ 方法已经非常熟悉了,__init__ 方法通常用在初始化一个类实例的时候。例如:

这样便是__init__最普通的用法了。但__init__其实不是实例化一个类的时候第一个被调用 的方法。当使用 Persion(name, age) 这样的表达式来实例化一个类时,最先被调用的方法 其实是 __new__ 方法。

3.对于__call__

对象通过提供__call__(slef, [,*args [,**kwargs]])方法可以模拟函数的行为,如果一个对象x提供了该方法,就可以像函数一样使用它,也就是说x(arg1, arg2...) 等同于调用x.__call__(self, arg1, arg2) 。模拟函数的对象可以用于创建防函数(functor) 或代理(proxy).

总结,在Python中,类的行为就是这样,__new__、__init__、__call__等方法不是必须写的,会默认调用,如果自己定义了,就是override,可以custom。既然override了,通常也会显式调用进行补偿以达到extend的目的。

这也是为什么会出现"明明定义def _init__(self, *args, **kwargs),对象怎么不进行初始化"这种看起来诡异的行为。(注,这里_init__少写了个下划线,因为__init__不是必须写的,所以这里不会报错,而是当做一个新的方法_init__)

Python中冷门但非常好用的内置函数

Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性

Counter

collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:

容器名简介

namedtuple() 创建命名元组子类的工厂函数

deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)

ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面

Counter 字典的子类,提供了可哈希对象的计数功能

OrderedDict 字典的子类,保存了他们被添加的顺序

defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值

UserDict 封装了字典对象,简化了字典子类化

UserList 封装了列表对象,简化了列表子类化

UserString 封装了字符串对象,简化了字符串子类化

其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法

举例

#统计词频

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

result = {}

for fruit in fruits:

if not result.get(fruit):

result[fruit] = 1

else:

result[fruit] += 1

print(result)

#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:

from collections import Counter

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

c = Counter(fruits)

print(dict(c))

#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了,也更容易阅读和维护了。

elements()

返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。

c = Counter(a=4, b=2, c=0, d=-2)

sorted(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']most_common([n])

返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:

Counter('abracadabra').most_common(3)

[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档

实战

Leetcode 1002.查找共用字符

给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。

输入:words = ["bella", "label", "roller"]

输出:["e", "l", "l"]

输入:words = ["cool", "lock", "cook"]

输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数

class Solution:

def commonChars(self, words: List[str]) - List[str]:

from collections import Counter

ans = Counter(words[0])

for i in words[1:]:

ans = Counter(i)

return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的

sorted

在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表

对列表升序操作:

a = sorted([2, 4, 3, 7, 1, 9])

print(a)

# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:

sorted((4,1,9,6),reverse=True)

print(a)

# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:

fruits = ['apple', 'watermelon', 'pear', 'banana']

a = sorted(fruits, key = lambda x : len(x))

print(a)

# 输出:['pear', 'apple', 'banana', 'watermelon']all

all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。

all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0

True

all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素

False

all([0, 1,2, 3]) # 列表list,存在一个为0的元素

False

all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0

True

all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素

False

all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素

False

all([]) # 空列表

True

all(()) # 空元组

Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。

F-strings

在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:

s1='Hello'

s2='World'

print(f'{s1} {s2}!')

# Hello World!在F-strings中我们也可以执行函数:

def power(x):

return x*x

x=4

print(f'{x} * {x} = {power(x)}')

# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。

本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~


网站题目:PYTHON中创造函数 Python 构造函数
标题路径:http://cqcxhl.cn/article/docpsgi.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP