重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法。
蕉岭ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:13518219792(备注:SSL证书合作)期待与您的合作!
受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线。 它带有数据集、颜色面板和主题,就像 Plotly.py 一样。
Plotly Express 完全免费:凭借其宽松的开源 MIT 许可证,您可以随意使用它(是的,甚至在商业产品中!)。
最重要的是,Plotly Express 与 Plotly 生态系统的其他部分完全兼容:在您的 Dash 应用程序中使用它,使用 Orca 将您的数据导出为几乎任何文件格式,或使用JupyterLab 图表编辑器在 GUI 中编辑它们!
用 pip install plotly_express 命令可以安装 Plotly Express。
一旦导入Plotly Express(通常是 px ),大多数绘图只需要一个函数调用,接受一个整洁的Pandas dataframe,并简单描述你想要制作的图。 如果你想要一个基本的散点图,它只是 px.scatter(data,x =“column_name”,y =“column_name”)。
以下是内置的 Gapminder 数据集的示例,显示2007年按国家/地区的人均预期寿命和人均GDP 之间的趋势:
如果你想通过大陆区分它们,你可以使用 color 参数为你的点着色,由 px 负责设置默认颜色,设置图例等:
这里的每一点都是一个国家,所以也许我们想要按国家人口来衡量这些点...... 没问题:这里也有一个参数来设置,它被称为 size:
如果你好奇哪个国家对应哪个点? 可以添加一个 hover_name ,您可以轻松识别任何一点:只需将鼠标放在您感兴趣的点上即可! 事实上,即使没有 hover_name ,整个图表也是互动的:
也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰:
也许你不仅仅对 2007年 感兴趣,而且你想看看这张图表是如何随着时间的推移而演变的。 可以通过设置 animation_frame=“year” (以及 animation_group =“country” 来标识哪些圆与控制条中的年份匹配)来设置动画。
在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。 我们可以提供更漂亮的“标签” (labels),可以在整个图表、图例、标题轴和悬停(hovers)中应用。 我们还可以手动设置边界,以便动画在整个过程中看起来更棒:
因为这是地理数据,我们也可以将其表示为动画地图,因此这清楚地表明 Plotly Express 不仅仅可以绘制散点图(不过这个数据集缺少前苏联的数据)。
事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。 条形图(Bar)有二维笛卡尔和极坐标风格。
进行可视化时,您可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。 大多数二维笛卡尔图接受连续或分类数据,并自动处理日期/时间数据。 可以查看我们的图库 (ref-3) 来了解每个图表的例子。
数据 探索 的主要部分是理解数据集中值的分布,以及这些分布如何相互关联。 Plotly Express 有许多功能来处理这些任务。
使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布:
直方图:
箱形图:
小提琴图:
还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。 Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。
在上面的一些图中你会注意到一些不错的色标。 在 Plotly Express 中, px.colors 模块包含许多有用的色标和序列:定性的、序列型的、离散的、循环的以及所有您喜欢的开源包:ColorBrewer、cmocean 和 Carto 。 我们还提供了一些功能来制作可浏览的样本供您欣赏(ref-3):
定性的颜色序列:
众多内置顺序色标中的一部分:
我们特别为我们的交互式多维图表感到自豪,例如散点图矩阵(SPLOMS)、平行坐标和我们称之为并行类别的并行集。 通过这些,您可以在单个图中可视化整个数据集以进行数据 探索 。 在你的Jupyter 笔记本中查看这些单行及其启用的交互:
散点图矩阵(SPLOM)允许您可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。 数据集中的每一行都显示为每个图中的一个点。 你可以进行缩放、平移或选择操作,你会发现所有图都链接在一起!
平行坐标允许您同时显示3个以上的连续变量。 dataframe 中的每一行都是一行。 您可以拖动尺寸以重新排序它们并选择值范围之间的交叉点。
并行类别是并行坐标的分类模拟:使用它们可视化数据集中多组类别之间的关系。
Plotly Express 之于 Plotly.py 类似 Seaborn 之于 matplotlib:Plotly Express 是一个高级封装库,允许您快速创建图表,然后使用底层 API 和生态系统的强大功能进行修改。 对于Plotly 生态系统,这意味着一旦您使用 Plotly Express 创建了一个图形,您就可以使用Themes,使用 FigureWidgets 进行命令性编辑,使用 Orca 将其导出为几乎任何文件格式,或者在我们的 GUI JupyterLab 图表编辑器中编辑它 。
主题(Themes)允许您控制图形范围的设置,如边距、字体、背景颜色、刻度定位等。 您可以使用模板参数应用任何命名的主题或主题对象:
有三个内置的 Plotly 主题可以使用, 分别是 plotly, plotlywhite 和 plotlydark。
px 输出继承自 Plotly.py 的 Figure 类 ExpressFigure 的对象,这意味着你可以使用任何 Figure 的访问器和方法来改变 px生成的绘图。 例如,您可以将 .update() 调用链接到 px 调用以更改图例设置并添加注释。 .update() 现在返回修改后的数字,所以你仍然可以在一个很长的 Python 语句中执行此操作:
在这里,在使用 Plotly Express 生成原始图形之后,我们使用 Plotly.py 的 API 来更改一些图例设置并添加注释。
Dash 是 Plotly 的开源框架,用于构建具有 Plotly.py 图表的分析应用程序和仪表板。Plotly Express 产生的对象与 Dash 100%兼容,只需将它们直接传递到 dash_core_components.Graph,如下所示: dcc.Graph(figure = px.scatter(...))。 这是一个非常简单的 50行 Dash 应用程序的示例,它使用 px 生成其中的图表:
这个 50 行的 Dash 应用程序使用 Plotly Express 生成用于浏览数据集的 UI 。
可视化数据有很多原因:有时您想要提供一些想法或结果,并且您希望对图表的每个方面施加很多控制,有时您希望快速查看两个变量之间的关系。 这是交互与 探索 的范畴。
Plotly.py 已经发展成为一个非常强大的可视化交互工具:它可以让你控制图形的几乎每个方面,从图例的位置到刻度的长度。 不幸的是,这种控制的代价是冗长的:有时可能需要多行 Python 代码才能用 Plotly.py 生成图表。
我们使用 Plotly Express 的主要目标是使 Plotly.py 更容易用于 探索 和快速迭代。
我们想要构建一个库,它做出了不同的权衡:在可视化过程的早期牺牲一些控制措施来换取一个不那么详细的 API,允许你在一行 Python 代码中制作各种各样的图表。 然而,正如我们上面所示,该控件并没有消失:你仍然可以使用底层的 Plotly.py 的 API 来调整和优化用 Plotly Express 制作的图表。
支持这种简洁 API 的主要设计决策之一是所有 Plotly Express 的函数都接受“整洁”的 dataframe 作为输入。 每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column 甚至是 动画帧到数据框(dataframe)中的列。 当您键入 px.scatter(data,x ='col1',y='col2') 时,Plotly Express 会为数据框中的每一行创建一个小符号标记 - 这就是 px.scatter 的作用 - 并将 “col1” 映射到 x 位置(类似于 y 位置)。 这种方法的强大之处在于它以相同的方式处理所有可视化变量:您可以将数据框列映射到颜色,然后通过更改参数来改变您的想法并将其映射到大小或进行行分面(facet-row)。
接受整个整洁的 dataframe 的列名作为输入(而不是原始的 numpy 向量)也允许 px 为你节省大量的时间,因为它知道列的名称,它可以生成所有的 Plotly.py 配置用于标记图例、轴、悬停框、构面甚至动画帧。 但是,如上所述,如果你的 dataframe 的列被笨拙地命名,你可以告诉 px 用每个函数的 labels 参数替换更好的。
仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等,所有这些都不需要重塑您的数据!
在 API 级别,我们在 px 中投入了大量的工作,以确保所有参数都被命名,以便在键入时最大限度地发现:所有 scatter -类似的函数都以 scatter 开头(例如 scatter_polar, scatter_ternary)所以你可以通过自动补全来发现它们。 我们选择拆分这些不同的散点图函数,因此每个散点图函数都会接受一组定制的关键字参数,特别是它们的坐标系。 也就是说,共享坐标系的函数集(例如 scatter, line & bar,或 scatter_polar, line_polar 和 bar_polar )也有相同的参数,以最大限度地方便学习。 我们还花了很多精力来提出简短而富有表现力的名称,这些名称很好地映射到底层的 Plotly.py 属性,以便于在工作流程中稍后调整到交互的图表中。
最后,Plotly Express 作为一个新的 Python 可视化库,在 Plotly 生态系统下,将会迅速发展。所以不要犹豫,立即开始使用 Plotly Express 吧!
1、 Matplotlib
Matplotlib是最全面的Python数据可视化库。
有人认为Matplotlib的界面很难看,但笔者认为,作为最基础的Python数据可视化库,Matplotlib能为使用者的可视化目标提供最大的可能性。
使用JavaScript的开发者们也有各自偏好的可视化库,但当所处理的任务中涉及大量不被高级库所支持的定制功能时,开发者们就必须用到D3.js。Matplotlib也是如此。
2、 Plotly
虽然坚信要进行数据可视化,就必须得掌握Matplotlib,但大多数情况下读者更愿意使用Plotly,因为使用Plotly只需要写最少的代码就能得出最多彩缤纷的图像。
无论是想构造一张3D表面图,或是一张基于地图的散点图,又或是一张交互性动画图,Plotly都能在最短的时间内满足要求。
Plotly还提供一个表格工作室,使用者可以将自己的可视化上传到一个在线存储库中以便未来进行编辑。
更多Python知识,请关注Python视频教程!
Python有很多经典的数据可视化库,比较经典的数据可视化库有下面几个。
matplotlib
是Python编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向应用程序嵌入式绘图提供了应用程序接口。
pyplot 是 matplotlib 的一个模块,它提供了一个类似 MATLAB 的接口。 matplotlib 被设计得用起来像 MATLAB,具有使用 Python 的能力。
优点:绘图质量高,可绘制出版物质量级别的图形。代码够简单,易于理解和扩展,使绘图变得轻松,通过Matplotlib可以很轻松地画一些或简单或复杂的图形,几行代码即可生成直方图、条形图、散点图、密度图等等,最重要的是免费和开源。
pandas
Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。需要说明的是它不是“熊猫”,名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。
优点:是Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观的处理关系型、标记型数据。对于数据分析专业人士,它是数据分析及可视化的利器。
seaborn
Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。
它是基于matplotlib更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,应该把Seaborn视为matplotlib的补充,而不是替代物,它能高度兼容numpy与pandas数据结构以及scipy与statsmodels等统计模式。
优点:matplotlib高度封装,代码量少,图表漂亮。比起matplotlib具有更美观、更现代的调色板设计等优点。scikit-plot
这是一个跟机器学习有效结合的绘图库。想要深入学习的小伙伴参见其github仓库,这里不再赘述了。
优点:Scikit-Plot是由ReiichiroNakano创建的用在机器学习的可视化工具,能最快速简洁的画出用Matplotlib要写很多行语句才能画出的图。关键是对于机器学习相关可视化处理,该库有较好的支持。
Networkx
networkx是Python的一个包,用于构建和操作复杂的图结构,提供分析图的算法。图是由顶点、边和可选的属性构成的数据结构,顶点表示数据,边是由两个顶点唯一确定的,表示两个顶点之间的关系。顶点和边也可以拥有更多的属性,以存储更多的信息。
优点:用于创建、操纵和研究复杂网络的结构、以及学习复杂网络的结构、功能及其动力学。
上面是我的回答,希望对您有所帮助!
用python进行数据可视化的方法:可以利用可视化的专属库matplotlib和seaborn来实现。基于python的绘图库为matplotlib提供了完整的2D和有限3D图形支持。
我们只需借助可视化的两个专属库(libraries),俗称matplotlib和seaborn即可。
(推荐教程:Python入门教程)
下面我们来详细介绍下:
Matplotlib:基于Python的绘图库为matplotlib提供了完整的2D和有限3D图形支持。这对在跨平台互动环境中发布高质量图片很有用。它也可用于动画。
Seaborn:Seaborn是一个Python中用于创建信息丰富和有吸引力的统计图形库。这个库是基于matplotlib的。Seaborn提供多种功能,如内置主题、调色板、函数和工具,来实现单因素、双因素、线性回归、数据矩阵、统计时间序列等的可视化,以让我们来进一步构建复杂的可视化。
数据可视化是展示数据、理解数据的有效手段,常用的Python数据可视化库如下:
1.Matplotlib:第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。
2.Seaborn:利用Matplotlib,用简洁的代码来制作好看的图表,与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。
3.ggplot:基于R的一个作图库的ggplot2,同时利用了源于《图像语法》中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。
4.Bokeh:与ggplot很相似,但与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。
5.Plotly:可以通过Python notebook使用,与bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。
6.pygal:与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
7.geoplotlib:用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图等,必须安装Pyglet方可使用。
8.missingno:用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。