重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

go语言异步模型 go异步调用

2020-08-20:GO语言中的协程与Python中的协程的区别?

福哥答案2020-08-20:

创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、成都网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的朝阳网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

1.golang的协程是基于gpm机制,是可以多核多线程的。Python的协程是eventloop模型(IO多路复用技术)实现,协程是严格的 1:N 关系,也就是一个线程对应了多个协程。虽然可以实现异步I/O,但是不能有效利用多核(GIL)。

2.golang用go func。python用import asyncio,async/await表达式。

评论

Go语言——goroutine并发模型

参考:

Goroutine并发调度模型深度解析手撸一个协程池

Golang 的 goroutine 是如何实现的?

Golang - 调度剖析【第二部分】

OS线程初始栈为2MB。Go语言中,每个goroutine采用动态扩容方式,初始2KB,按需增长,最大1G。此外GC会收缩栈空间。

BTW,增长扩容都是有代价的,需要copy数据到新的stack,所以初始2KB可能有些性能问题。

更多关于stack的内容,可以参见大佬的文章。 聊一聊goroutine stack

用户线程的调度以及生命周期管理都是用户层面,Go语言自己实现的,不借助OS系统调用,减少系统资源消耗。

Go语言采用两级线程模型,即用户线程与内核线程KSE(kernel scheduling entity)是M:N的。最终goroutine还是会交给OS线程执行,但是需要一个中介,提供上下文。这就是G-M-P模型

Go调度器有两个不同的运行队列:

go1.10\src\runtime\runtime2.go

Go调度器根据事件进行上下文切换。

调度的目的就是防止M堵塞,空闲,系统进程切换。

详见 Golang - 调度剖析【第二部分】

Linux可以通过epoll实现网络调用,统称网络轮询器N(Net Poller)。

文件IO操作

上面都是防止M堵塞,任务窃取是防止M空闲

每个M都有一个特殊的G,g0。用于执行调度,gc,栈管理等任务,所以g0的栈称为调度栈。g0的栈不会自动增长,不会被gc,来自os线程的栈。

go1.10\src\runtime\proc.go

G没办法自己运行,必须通过M运行

M通过通过调度,执行G

从M挂载P的runq中找到G,执行G

为什么要使用 Go 语言?Go 语言的优势在哪里?

1、简单易学。

Go语言的作者本身就很懂C语言,所以同样Go语言也会有C语言的基因,所以对于程序员来说,Go语言天生就会让人很熟悉,容易上手。

2、并发性好。

Go语言天生支持并发,可以充分利用多核,轻松地使用并发。 这是Go语言最大的特点。

描述

Go的语法接近C语言,但对于变量的声明有所不同。Go支持垃圾回收功能。Go的并行模型是以东尼·霍尔的通信顺序进程(CSP)为基础,采取类似模型的其他语言包括Occam和Limbo,但它也具有Pi运算的特征,比如通道传输。

在1.8版本中开放插件(Plugin)的支持,这意味着现在能从Go中动态加载部分函数。

与C++相比,Go并不包括如枚举、异常处理、继承、泛型、断言、虚函数等功能,但增加了 切片(Slice) 型、并发、管道、垃圾回收、接口(Interface)等特性的语言级支持。

Golang kafka简述和操作(sarama同步异步和消费组)

一、Kafka简述

1. 为什么需要用到消息队列

异步:对比以前的串行同步方式来说,可以在同一时间做更多的事情,提高效率;

解耦:在耦合太高的场景,多个任务要对同一个数据进行操作消费的时候,会导致一个任务的处理因为另一个任务对数据的操作变得及其复杂。

缓冲:当遇到突发大流量的时候,消息队列可以先把所有消息有序保存起来,避免直接作用于系统主体,系统主题始终以一个平稳的速率去消费这些消息。

2.为什么选择kafka呢?

这没有绝对的好坏,看个人需求来选择,我这里就抄了一段他人总结的的优缺点,可见原文

kafka的优点:

1.支持多个生产者和消费者2.支持broker的横向拓展3.副本集机制,实现数据冗余,保证数据不丢失4.通过topic将数据进行分类5.通过分批发送压缩数据的方式,减少数据传输开销,提高吞高量6.支持多种模式的消息7.基于磁盘实现数据的持久化8.高性能的处理信息,在大数据的情况下,可以保证亚秒级的消息延迟9.一个消费者可以支持多种topic的消息10.对CPU和内存的消耗比较小11.对网络开销也比较小12.支持跨数据中心的数据复制13.支持镜像集群

kafka的缺点:

1.由于是批量发送,所以数据达不到真正的实时2.对于mqtt协议不支持3.不支持物联网传感数据直接接入4.只能支持统一分区内消息有序,无法实现全局消息有序5.监控不完善,需要安装插件6.需要配合zookeeper进行元数据管理7.会丢失数据,并且不支持事务8.可能会重复消费数据,消息会乱序,可用保证一个固定的partition内部的消息是有序的,但是一个topic有多个partition的话,就不能保证有序了,需要zookeeper的支持,topic一般需要人工创建,部署和维护一般都比mq高

3. Golang 操作kafka

3.1. kafka的环境

网上有很多搭建kafka环境教程,这里就不再搭建,就展示一下kafka的环境,在kubernetes上进行的搭建,有需要的私我,可以发yaml文件

3.2. 第三方库

github.com/Shopify/sarama // kafka主要的库*github.com/bsm/sarama-cluster // kafka消费组

3.3. 消费者

单个消费者

funcconsumer(){varwg sync.WaitGroup  consumer, err := sarama.NewConsumer([]string{"172.20.3.13:30901"},nil)iferr !=nil{      fmt.Println("Failed to start consumer: %s", err)return}  partitionList, err := consumer.Partitions("test0")//获得该topic所有的分区iferr !=nil{      fmt.Println("Failed to get the list of partition:, ", err)return}forpartition :=rangepartitionList {      pc, err := consumer.ConsumePartition("test0",int32(partition), sarama.OffsetNewest)iferr !=nil{        fmt.Println("Failed to start consumer for partition %d: %s\n", partition, err)return}      wg.Add(1)gofunc(sarama.PartitionConsumer){//为每个分区开一个go协程去取值formsg :=rangepc.Messages() {//阻塞直到有值发送过来,然后再继续等待fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value))        }deferpc.AsyncClose()        wg.Done()      }(pc)  }  wg.Wait()}funcmain(){  consumer()}

消费组

funcconsumerCluster(){  groupID :="group-1"config := cluster.NewConfig()  config.Group.Return.Notifications =trueconfig.Consumer.Offsets.CommitInterval =1* time.Second  config.Consumer.Offsets.Initial = sarama.OffsetNewest//初始从最新的offset开始c, err := cluster.NewConsumer(strings.Split("172.20.3.13:30901",","),groupID, strings.Split("test0",","), config)iferr !=nil{      glog.Errorf("Failed open consumer: %v", err)return}deferc.Close()gofunc(c *cluster.Consumer){      errors := c.Errors()      noti := c.Notifications()for{select{caseerr := -errors:            glog.Errorln(err)case-noti:        }      }  }(c)formsg :=rangec.Messages() {      fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value))      c.MarkOffset(msg,"")//MarkOffset 并不是实时写入kafka,有可能在程序crash时丢掉未提交的offset}}funcmain(){goconsumerCluster()}

3.4. 生产者

同步生产者

packagemainimport("fmt""github.com/Shopify/sarama")funcmain(){  config := sarama.NewConfig()  config.Producer.RequiredAcks = sarama.WaitForAll//赋值为-1:这意味着producer在follower副本确认接收到数据后才算一次发送完成。config.Producer.Partitioner = sarama.NewRandomPartitioner//写到随机分区中,默认设置8个分区config.Producer.Return.Successes =truemsg := sarama.ProducerMessage{}  msg.Topic =`test0`msg.Value = sarama.StringEncoder("Hello World!")  client, err := sarama.NewSyncProducer([]string{"172.20.3.13:30901"}, config)iferr !=nil{      fmt.Println("producer close err, ", err)return}deferclient.Close()  pid, offset, err := client.SendMessage(msg)iferr !=nil{      fmt.Println("send message failed, ", err)return}  fmt.Printf("分区ID:%v, offset:%v \n", pid, offset)}

异步生产者

funcasyncProducer(){  config := sarama.NewConfig()  config.Producer.Return.Successes =true//必须有这个选项config.Producer.Timeout =5* time.Second  p, err := sarama.NewAsyncProducer(strings.Split("172.20.3.13:30901",","), config)deferp.Close()iferr !=nil{return}//这个部分一定要写,不然通道会被堵塞gofunc(p sarama.AsyncProducer){      errors := p.Errors()      success := p.Successes()for{select{caseerr := -errors:iferr !=nil{              glog.Errorln(err)            }case-success:        }      }  }(p)for{      v :="async: "+ strconv.Itoa(rand.New(rand.NewSource(time.Now().UnixNano())).Intn(10000))      fmt.Fprintln(os.Stdout, v)      msg := sarama.ProducerMessage{        Topic: topics,        Value: sarama.ByteEncoder(v),      }      p.Input() - msg      time.Sleep(time.Second *1)  }}funcmain(){goasyncProducer()select{      }}

3.5. 结果展示-

同步生产打印:

分区ID:0,offset:90

消费打印:

Partition:0,Offset:90,key:,value:Hello World!

异步生产打印:

async:7272async:7616async:998

消费打印:

Partition:0,Offset:91,key:,value:async:7272Partition:0,Offset:92,key:,value:async:7616Partition:0,Offset:93,key:,value:async:998

go有没有开源的类似java的mina或者netty的socket框架

mina与netty都是Trustin Lee的作品,所以在很多方面都十分相似,他们线程模型也是基本一致,采用了Reactors in threads模型,即Main Reactor + Sub Reactors的模式。由main reactor处理连接相关的任务:accept、connect等,当连接处理完毕并建立

协程与异步IO

协程,又称微线程,纤程。英文名 Coroutine 。Python对协程的支持是通过 generator 实现的。在generator中,我们不但可以通过for循环来迭代,还可以不断调用 next()函数 获取由 yield 语句返回的下一个值。但是Python的yield不但可以返回一个值,它还可以接收调用者发出的参数。yield其实是终端当前的函数,返回给调用方。python3中使用yield来实现range,节省内存,提高性能,懒加载的模式。

asyncio是Python 3.4 版本引入的 标准库 ,直接内置了对异步IO的支持。

从Python 3.5 开始引入了新的语法 async 和 await ,用来简化yield的语法:

import asyncio

import threading

async def compute(x, y):

print("Compute %s + %s ..." % (x, y))

print(threading.current_thread().name)

await asyncio.sleep(x + y)

return x + y

async def print_sum(x, y):

result = await compute(x, y)

print("%s + %s = %s" % (x, y, result))

print(threading.current_thread().name)

if __name__ == "__main__":

loop = asyncio.get_event_loop()

tasks = [print_sum(1, 2), print_sum(3, 4)]

loop.run_until_complete(asyncio.wait(tasks))

loop.close()

线程是内核进行抢占式的调度的,这样就确保了每个线程都有执行的机会。而 coroutine 运行在同一个线程中,由语言的运行时中的 EventLoop(事件循环) 来进行调度。和大多数语言一样,在 Python 中,协程的调度是非抢占式的,也就是说一个协程必须主动让出执行机会,其他协程才有机会运行。

让出执行的关键字就是 await。也就是说一个协程如果阻塞了,持续不让出 CPU,那么整个线程就卡住了,没有任何并发。

PS: 作为服务端,event loop最核心的就是IO多路复用技术,所有来自客户端的请求都由IO多路复用函数来处理;作为客户端,event loop的核心在于利用Future对象延迟执行,并使用send函数激发协程,挂起,等待服务端处理完成返回后再调用CallBack函数继续下面的流程

Go语言的协程是 语言本身特性 ,erlang和golang都是采用了CSP(Communicating Sequential Processes)模式(Python中的协程是eventloop模型),但是erlang是基于进程的消息通信,go是基于goroutine和channel的通信。

Python和Go都引入了消息调度系统模型,来避免锁的影响和进程/线程开销大的问题。

协程从本质上来说是一种用户态的线程,不需要系统来执行抢占式调度,而是在语言层面实现线程的调度 。因为协程 不再使用共享内存/数据 ,而是使用 通信 来共享内存/锁,因为在一个超级大系统里具有无数的锁,共享变量等等会使得整个系统变得无比的臃肿,而通过消息机制来交流,可以使得每个并发的单元都成为一个独立的个体,拥有自己的变量,单元之间变量并不共享,对于单元的输入输出只有消息。开发者只需要关心在一个并发单元的输入与输出的影响,而不需要再考虑类似于修改共享内存/数据对其它程序的影响。


网页题目:go语言异步模型 go异步调用
链接分享:http://cqcxhl.cn/article/dodpghp.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP