重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

go语言kafka客户端 kafka支持的客户端语言

docker 配置 kafka+zookeeper,golang接入示例

配置zookeeper 使用kafka/bin/下自带的zk

创新互联网络公司拥有10余年的成都网站开发建设经验,上千客户的共同信赖。提供网站制作、成都网站建设、网站开发、网站定制、外链、建网站、网站搭建、响应式网站、网页设计师打造企业风格,提供周到的售前咨询和贴心的售后服务

运行 报错 卒。配置低了

docker-compose.yml

报错

换云搬瓦工的机器试一下

但是docker ps -a 发现只有zookeeper启动了,kafka失败, 检查日志 发现kafka运行需要java环境,而且对内存有要求,搬瓦工的vps不足够

因此修改docker-compose.yml 加入以下

stop 再启动

完美

测试

进入容器

查看已经建好的topic (docker-compose.yml)

发送消息

接收消息

接下来是golang接入kafka了

运行

Kafka 客户端开启压缩

需要注意的是,

1. borker / server 默认允许的最大消息大小是 1M,过大的消息会被拒

2. 1M 是包括压缩之后的大小,因此 producer/client 如果开启压缩,将大于 1M 的数据压缩至小于 1M 发送即可

3. 如果修改 broker 端的 message.max.bytes 大小,需要修改消费者、follower fetch 的大小与之匹配,并且允许较大的消息对性能有较大影响

1. 允许发的数据 1M

2. 开启压缩

一次golang sarama kafka内存占用大的排查经历

环境:

现象:golang微服务内存占用超过1G,查看日志发现大量kafka相关错误日志,继而查看kafka集群,其中一个kafka节点容器挂掉了。

疑问 为什么kafka集群只有一个broker挂了,客户端就大量报错呢

通过beego admin页面获取 mem-1.memprof

可以看到调用栈为 withRecover backgroundMetadataUpdataer refreshMeaatdata RefreshMetada tryRefreshMetadata ...

sarama-cluster: NewClient

为什么kafka集群只有一个broker,但是NewClient确失败了?

在kafka容器里查看topic, 发现Replicas和Isr只有一个,找到kafka官方配置说明,自动生成的topic需要配置default.replication.factor这个参数,才会生成3副本。

golang使用Nsq

1. 介绍

最近在研究一些消息中间件,常用的MQ如RabbitMQ,ActiveMQ,Kafka等。NSQ是一个基于Go语言的分布式实时消息平台,它基于MIT开源协议发布,由bitly公司开源出来的一款简单易用的消息中间件。

官方和第三方还为NSQ开发了众多客户端功能库,如官方提供的基于HTTP的nsqd、Go客户端go-nsq、Python客户端pynsq、基于Node.js的JavaScript客户端nsqjs、异步C客户端libnsq、Java客户端nsq-java以及基于各种语言的众多第三方客户端功能库。

1.1 Features

1). Distributed

NSQ提供了分布式的,去中心化,且没有单点故障的拓扑结构,稳定的消息传输发布保障,能够具有高容错和HA(高可用)特性。

2). Scalable易于扩展

NSQ支持水平扩展,没有中心化的brokers。内置的发现服务简化了在集群中增加节点。同时支持pub-sub和load-balanced 的消息分发。

3). Ops Friendly

NSQ非常容易配置和部署,生来就绑定了一个管理界面。二进制包没有运行时依赖。官方有Docker image。

4.Integrated高度集成

官方的 Go 和 Python库都有提供。而且为大多数语言提供了库。

1.2 组件

1.3 拓扑结构

NSQ推荐通过他们相应的nsqd实例使用协同定位发布者,这意味着即使面对网络分区,消息也会被保存在本地,直到它们被一个消费者读取。更重要的是,发布者不必去发现其他的nsqd节点,他们总是可以向本地实例发布消息。

NSQ

首先,一个发布者向它的本地nsqd发送消息,要做到这点,首先要先打开一个连接,然后发送一个包含topic和消息主体的发布命令,在这种情况下,我们将消息发布到事件topic上以分散到我们不同的worker中。

事件topic会复制这些消息并且在每一个连接topic的channel上进行排队,在我们的案例中,有三个channel,它们其中之一作为档案channel。消费者会获取这些消息并且上传到S3。

nsqd

每个channel的消息都会进行排队,直到一个worker把他们消费,如果此队列超出了内存限制,消息将会被写入到磁盘中。Nsqd节点首先会向nsqlookup广播他们的位置信息,一旦它们注册成功,worker将会从nsqlookup服务器节点上发现所有包含事件topic的nsqd节点。

nsqlookupd

2. Internals

2.1 消息传递担保

1)客户表示已经准备好接收消息

2)NSQ 发送一条消息,并暂时将数据存储在本地(在 re-queue 或 timeout)

3)客户端回复 FIN(结束)或 REQ(重新排队)分别指示成功或失败。如果客户端没有回复, NSQ 会在设定的时间超时,自动重新排队消息

这确保了消息丢失唯一可能的情况是不正常结束 nsqd 进程。在这种情况下,这是在内存中的任何信息(或任何缓冲未刷新到磁盘)都将丢失。

如何防止消息丢失是最重要的,即使是这个意外情况可以得到缓解。一种解决方案是构成冗余 nsqd对(在不同的主机上)接收消息的相同部分的副本。因为你实现的消费者是幂等的,以两倍时间处理这些消息不会对下游造成影响,并使得系统能够承受任何单一节点故障而不会丢失信息。

2.2 简化配置和管理

单个 nsqd 实例被设计成可以同时处理多个数据流。流被称为“话题”和话题有 1 个或多个“通道”。每个通道都接收到一个话题中所有消息的拷贝。在实践中,一个通道映射到下行服务消费一个话题。

在更底的层面,每个 nsqd 有一个与 nsqlookupd 的长期 TCP 连接,定期推动其状态。这个数据被 nsqlookupd 用于给消费者通知 nsqd 地址。对于消费者来说,一个暴露的 HTTP /lookup 接口用于轮询。为话题引入一个新的消费者,只需启动一个配置了 nsqlookup 实例地址的 NSQ 客户端。无需为添加任何新的消费者或生产者更改配置,大大降低了开销和复杂性。

2.3 消除单点故障

NSQ被设计以分布的方式被使用。nsqd 客户端(通过 TCP )连接到指定话题的所有生产者实例。没有中间人,没有消息代理,也没有单点故障。

这种拓扑结构消除单链,聚合,反馈。相反,你的消费者直接访问所有生产者。从技术上讲,哪个客户端连接到哪个 NSQ 不重要,只要有足够的消费者连接到所有生产者,以满足大量的消息,保证所有东西最终将被处理。对于 nsqlookupd,高可用性是通过运行多个实例来实现。他们不直接相互通信和数据被认为是最终一致。消费者轮询所有的配置的 nsqlookupd 实例和合并 response。失败的,无法访问的,或以其他方式故障的节点不会让系统陷于停顿。

2.4 效率

对于数据的协议,通过推送数据到客户端最大限度地提高性能和吞吐量的,而不是等待客户端拉数据。这个概念,称之为 RDY 状态,基本上是客户端流量控制的一种形式。

efficiency

2.5 心跳和超时

组合应用级别的心跳和 RDY 状态,避免头阻塞现象,也可能使心跳无用(即,如果消费者是在后面的处理消息流的接收缓冲区中,操作系统将被填满,堵心跳)为了保证进度,所有的网络 IO 时间上限势必与配置的心跳间隔相关联。这意味着,你可以从字面上拔掉之间的网络连接 nsqd 和消费者,它会检测并正确处理错误。当检测到一个致命错误,客户端连接被强制关闭。在传输中的消息会超时而重新排队等待传递到另一个消费者。最后,错误会被记录并累计到各种内部指标。

2.6 分布式

因为NSQ没有在守护程序之间共享信息,所以它从一开始就是为了分布式操作而生。个别的机器可以随便宕机随便启动而不会影响到系统的其余部分,消息发布者可以在本地发布,即使面对网络分区。

这种“分布式优先”的设计理念意味着NSQ基本上可以永远不断地扩展,需要更高的吞吐量?那就添加更多的nsqd吧。唯一的共享状态就是保存在lookup节点上,甚至它们不需要全局视图,配置某些nsqd注册到某些lookup节点上这是很简单的配置,唯一关键的地方就是消费者可以通过lookup节点获取所有完整的节点集。清晰的故障事件——NSQ在组件内建立了一套明确关于可能导致故障的的故障权衡机制,这对消息传递和恢复都有意义。虽然它们可能不像Kafka系统那样提供严格的保证级别,但NSQ简单的操作使故障情况非常明显。

2.7 no replication

不像其他的队列组件,NSQ并没有提供任何形式的复制和集群,也正是这点让它能够如此简单地运行,但它确实对于一些高保证性高可靠性的消息发布没有足够的保证。我们可以通过降低文件同步的时间来部分避免,只需通过一个标志配置,通过EBS支持我们的队列。但是这样仍然存在一个消息被发布后马上死亡,丢失了有效的写入的情况。

2.8 没有严格的顺序

虽然Kafka由一个有序的日志构成,但NSQ不是。消息可以在任何时间以任何顺序进入队列。在我们使用的案例中,这通常没有关系,因为所有的数据都被加上了时间戳,但它并不适合需要严格顺序的情况。

2.9 无数据重复删除功能

NSQ对于超时系统,它使用了心跳检测机制去测试消费者是否存活还是死亡。很多原因会导致我们的consumer无法完成心跳检测,所以在consumer中必须有一个单独的步骤确保幂等性。

3. 实践安装过程

本文将nsq集群具体的安装过程略去,大家可以自行参考官网,比较简单。这部分介绍下笔者实验的拓扑,以及nsqadmin的相关信息。

3.1 拓扑结构

topology

实验采用3台NSQD服务,2台LOOKUPD服务。

采用官方推荐的拓扑,消息发布的服务和NSQD在一台主机。一共5台机器。

NSQ基本没有配置文件,配置通过命令行指定参数。

主要命令如下:

LOOKUPD命令

NSQD命令

工具类,消费后存储到本地文件。

发布一条消息

3.2 nsqadmin

对Streams的详细信息进行查看,包括NSQD节点,具体的channel,队列中的消息数,连接数等信息。

nsqadmin

channel

列出所有的NSQD节点:

nodes

消息的统计:

msgs

lookup主机的列表:

hosts

4. 总结

NSQ基本核心就是简单性,是一个简单的队列,这意味着它很容易进行故障推理和很容易发现bug。消费者可以自行处理故障事件而不会影响系统剩下的其余部分。

事实上,简单性是我们决定使用NSQ的首要因素,这方便与我们的许多其他软件一起维护,通过引入队列使我们得到了堪称完美的表现,通过队列甚至让我们增加了几个数量级的吞吐量。越来越多的consumer需要一套严格可靠性和顺序性保障,这已经超过了NSQ提供的简单功能。

结合我们的业务系统来看,对于我们所需要传输的发票消息,相对比较敏感,无法容忍某个nsqd宕机,或者磁盘无法使用的情况,该节点堆积的消息无法找回。这是我们没有选择该消息中间件的主要原因。简单性和可靠性似乎并不能完全满足。相比Kafka,ops肩负起更多负责的运营。另一方面,它拥有一个可复制的、有序的日志可以提供给我们更好的服务。但对于其他适合NSQ的consumer,它为我们服务的相当好,我们期待着继续巩固它的坚实的基础。

Golang kafka简述和操作(sarama同步异步和消费组)

一、Kafka简述

1. 为什么需要用到消息队列

异步:对比以前的串行同步方式来说,可以在同一时间做更多的事情,提高效率;

解耦:在耦合太高的场景,多个任务要对同一个数据进行操作消费的时候,会导致一个任务的处理因为另一个任务对数据的操作变得及其复杂。

缓冲:当遇到突发大流量的时候,消息队列可以先把所有消息有序保存起来,避免直接作用于系统主体,系统主题始终以一个平稳的速率去消费这些消息。

2.为什么选择kafka呢?

这没有绝对的好坏,看个人需求来选择,我这里就抄了一段他人总结的的优缺点,可见原文

kafka的优点:

1.支持多个生产者和消费者2.支持broker的横向拓展3.副本集机制,实现数据冗余,保证数据不丢失4.通过topic将数据进行分类5.通过分批发送压缩数据的方式,减少数据传输开销,提高吞高量6.支持多种模式的消息7.基于磁盘实现数据的持久化8.高性能的处理信息,在大数据的情况下,可以保证亚秒级的消息延迟9.一个消费者可以支持多种topic的消息10.对CPU和内存的消耗比较小11.对网络开销也比较小12.支持跨数据中心的数据复制13.支持镜像集群

kafka的缺点:

1.由于是批量发送,所以数据达不到真正的实时2.对于mqtt协议不支持3.不支持物联网传感数据直接接入4.只能支持统一分区内消息有序,无法实现全局消息有序5.监控不完善,需要安装插件6.需要配合zookeeper进行元数据管理7.会丢失数据,并且不支持事务8.可能会重复消费数据,消息会乱序,可用保证一个固定的partition内部的消息是有序的,但是一个topic有多个partition的话,就不能保证有序了,需要zookeeper的支持,topic一般需要人工创建,部署和维护一般都比mq高

3. Golang 操作kafka

3.1. kafka的环境

网上有很多搭建kafka环境教程,这里就不再搭建,就展示一下kafka的环境,在kubernetes上进行的搭建,有需要的私我,可以发yaml文件

3.2. 第三方库

github.com/Shopify/sarama // kafka主要的库*github.com/bsm/sarama-cluster // kafka消费组

3.3. 消费者

单个消费者

funcconsumer(){varwg sync.WaitGroup  consumer, err := sarama.NewConsumer([]string{"172.20.3.13:30901"},nil)iferr !=nil{      fmt.Println("Failed to start consumer: %s", err)return}  partitionList, err := consumer.Partitions("test0")//获得该topic所有的分区iferr !=nil{      fmt.Println("Failed to get the list of partition:, ", err)return}forpartition :=rangepartitionList {      pc, err := consumer.ConsumePartition("test0",int32(partition), sarama.OffsetNewest)iferr !=nil{        fmt.Println("Failed to start consumer for partition %d: %s\n", partition, err)return}      wg.Add(1)gofunc(sarama.PartitionConsumer){//为每个分区开一个go协程去取值formsg :=rangepc.Messages() {//阻塞直到有值发送过来,然后再继续等待fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value))        }deferpc.AsyncClose()        wg.Done()      }(pc)  }  wg.Wait()}funcmain(){  consumer()}

消费组

funcconsumerCluster(){  groupID :="group-1"config := cluster.NewConfig()  config.Group.Return.Notifications =trueconfig.Consumer.Offsets.CommitInterval =1* time.Second  config.Consumer.Offsets.Initial = sarama.OffsetNewest//初始从最新的offset开始c, err := cluster.NewConsumer(strings.Split("172.20.3.13:30901",","),groupID, strings.Split("test0",","), config)iferr !=nil{      glog.Errorf("Failed open consumer: %v", err)return}deferc.Close()gofunc(c *cluster.Consumer){      errors := c.Errors()      noti := c.Notifications()for{select{caseerr := -errors:            glog.Errorln(err)case-noti:        }      }  }(c)formsg :=rangec.Messages() {      fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value))      c.MarkOffset(msg,"")//MarkOffset 并不是实时写入kafka,有可能在程序crash时丢掉未提交的offset}}funcmain(){goconsumerCluster()}

3.4. 生产者

同步生产者

packagemainimport("fmt""github.com/Shopify/sarama")funcmain(){  config := sarama.NewConfig()  config.Producer.RequiredAcks = sarama.WaitForAll//赋值为-1:这意味着producer在follower副本确认接收到数据后才算一次发送完成。config.Producer.Partitioner = sarama.NewRandomPartitioner//写到随机分区中,默认设置8个分区config.Producer.Return.Successes =truemsg := sarama.ProducerMessage{}  msg.Topic =`test0`msg.Value = sarama.StringEncoder("Hello World!")  client, err := sarama.NewSyncProducer([]string{"172.20.3.13:30901"}, config)iferr !=nil{      fmt.Println("producer close err, ", err)return}deferclient.Close()  pid, offset, err := client.SendMessage(msg)iferr !=nil{      fmt.Println("send message failed, ", err)return}  fmt.Printf("分区ID:%v, offset:%v \n", pid, offset)}

异步生产者

funcasyncProducer(){  config := sarama.NewConfig()  config.Producer.Return.Successes =true//必须有这个选项config.Producer.Timeout =5* time.Second  p, err := sarama.NewAsyncProducer(strings.Split("172.20.3.13:30901",","), config)deferp.Close()iferr !=nil{return}//这个部分一定要写,不然通道会被堵塞gofunc(p sarama.AsyncProducer){      errors := p.Errors()      success := p.Successes()for{select{caseerr := -errors:iferr !=nil{              glog.Errorln(err)            }case-success:        }      }  }(p)for{      v :="async: "+ strconv.Itoa(rand.New(rand.NewSource(time.Now().UnixNano())).Intn(10000))      fmt.Fprintln(os.Stdout, v)      msg := sarama.ProducerMessage{        Topic: topics,        Value: sarama.ByteEncoder(v),      }      p.Input() - msg      time.Sleep(time.Second *1)  }}funcmain(){goasyncProducer()select{      }}

3.5. 结果展示-

同步生产打印:

分区ID:0,offset:90

消费打印:

Partition:0,Offset:90,key:,value:Hello World!

异步生产打印:

async:7272async:7616async:998

消费打印:

Partition:0,Offset:91,key:,value:async:7272Partition:0,Offset:92,key:,value:async:7616Partition:0,Offset:93,key:,value:async:998


网站名称:go语言kafka客户端 kafka支持的客户端语言
分享URL:http://cqcxhl.cn/article/dodsgec.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP