重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

go语言new后回收 go语言 cgo

Go 语言内存管理(三):逃逸分析

Go 语言较之 C 语言一个很大的优势就是自带 GC 功能,可 GC 并不是没有代价的。写 C 语言的时候,在一个函数内声明的变量,在函数退出后会自动释放掉,因为这些变量分配在栈上。如果你期望变量的数据可以在函数退出后仍然能被访问,就需要调用 malloc 方法在堆上申请内存,如果程序不再需要这块内存了,再调用 free 方法释放掉。Go 语言不需要你主动调用 malloc 来分配堆空间,编译器会自动分析,找出需要 malloc 的变量,使用堆内存。编译器的这个分析过程就叫做逃逸分析。

创新互联公司成立于2013年,先为巴马等服务建站,巴马等地企业,进行企业商务咨询服务。为巴马企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

所以你在一个函数中通过 dict := make(map[string]int) 创建一个 map 变量,其背后的数据是放在栈空间上还是堆空间上,是不一定的。这要看编译器分析的结果。

可逃逸分析并不是百分百准确的,它有缺陷。有的时候你会发现有些变量其实在栈空间上分配完全没问题的,但编译后程序还是把这些数据放在了堆上。如果你了解 Go 语言编译器逃逸分析的机制,在写代码的时候就可以有意识地绕开这些缺陷,使你的程序更高效。

Go 语言虽然在内存管理方面降低了编程门槛,即使你不了解堆栈也能正常开发,但如果你要在性能上较真的话,还是要掌握这些基础知识。

这里不对堆内存和栈内存的区别做太多阐述。简单来说就是, 栈分配廉价,堆分配昂贵。 栈空间会随着一个函数的结束自动释放,堆空间需要时间 GC 模块不断地跟踪扫描回收。如果对这两个概念有些迷糊,建议阅读下面 2 个文章:

这里举一个小例子,来对比下堆栈的差别:

stack 函数中的变量 i 在函数退出会自动释放;而 heap 函数返回的是对变量 i 的引用,也就是说 heap() 退出后,表示变量 i 还要能被访问,它会自动被分配到堆空间上。

他们编译出来的代码如下:

逻辑的复杂度不言而喻,从上面的汇编中可看到, heap() 函数调用了 runtime.newobject() 方法,它会调用 mallocgc 方法从 mcache 上申请内存,申请的内部逻辑前面文章已经讲述过。堆内存分配不仅分配上逻辑比栈空间分配复杂,它最致命的是会带来很大的管理成本,Go 语言要消耗很多的计算资源对其进行标记回收(也就是 GC 成本)。

Go 编辑器会自动帮我们找出需要进行动态分配的变量,它是在编译时追踪一个变量的生命周期,如果能确认一个数据只在函数空间内访问,不会被外部使用,则使用栈空间,否则就要使用堆空间。

我们在 go build 编译代码时,可使用 -gcflags '-m' 参数来查看逃逸分析日志。

以上面的两个函数为例,编译的日志输出是:

日志中的 i escapes to heap 表示该变量数据逃逸到了堆上。

需要使用堆空间,所以逃逸,这没什么可争议的。但编译器有时会将 不需要 使用堆空间的变量,也逃逸掉。这里是容易出现性能问题的大坑。网上有很多相关文章,列举了一些导致逃逸情况,其实总结起来就一句话:

多级间接赋值容易导致逃逸 。

这里的多级间接指的是,对某个引用类对象中的引用类成员进行赋值。Go 语言中的引用类数据类型有 func , interface , slice , map , chan , *Type(指针) 。

记住公式 Data.Field = Value ,如果 Data , Field 都是引用类的数据类型,则会导致 Value 逃逸。这里的等号 = 不单单只赋值,也表示参数传递。

根据公式,我们假设一个变量 data 是以下几种类型,相应的可以得出结论:

下面给出一些实际的例子:

如果变量值是一个函数,函数的参数又是引用类型,则传递给它的参数都会逃逸。

上例中 te 的类型是 func(*int) ,属于引用类型,参数 *int 也是引用类型,则调用 te(j) 形成了为 te 的参数(成员) *int 赋值的现象,即 te.i = j 会导致逃逸。代码中其他几种调用都没有形成 多级间接赋值 情况。

同理,如果函数的参数类型是 slice , map 或 interface{} 都会导致参数逃逸。

匿名函数的调用也是一样的,它本质上也是一个函数变量。有兴趣的可以自己测试一下。

只要使用了 Interface 类型(不是 interafce{} ),那么赋值给它的变量一定会逃逸。因为 interfaceVariable.Method() 先是间接的定位到它的实际值,再调用实际值的同名方法,执行时实际值作为参数传递给方法。相当于 interfaceVariable.Method.this = realValue

向 channel 中发送数据,本质上就是为 channel 内部的成员赋值,就像给一个 slice 中的某一项赋值一样。所以 chan *Type , chan map[Type]Type , chan []Type , chan interface{} 类型都会导致发送到 channel 中的数据逃逸。

这本来也是情理之中的,发送给 channel 的数据是要与其他函数分享的,为了保证发送过去的指针依然可用,只能使用堆分配。

可变参数如 func(arg ...string) 实际与 func(arg []string) 是一样的,会增加一层访问路径。这也是 fmt.Sprintf 总是会使参数逃逸的原因。

例子非常多,这里不能一一列举,我们只需要记住分析方法就好,即,2 级或更多级的访问赋值会 容易 导致数据逃逸。这里加上 容易 二字是因为随着语言的发展,相信这些问题会被慢慢解决,但现阶段,这个可以作为我们分析逃逸现象的依据。

下面代码中包含 2 种很常规的写法,但他们却有着很大的性能差距,建议自己想下为什么。

Benchmark 和 pprof 给出的结果:

熟悉堆栈概念可以让我们更容易看透 Go 程序的性能问题,并进行优化。

多级间接赋值会导致 Go 编译器出现不必要的逃逸,在一些情况下可能我们只需要修改一下数据结构就会使性能有大幅提升。这也是很多人不推荐在 Go 中使用指针的原因,因为它会增加一级访问路径,而 map , slice , interface{} 等类型是不可避免要用到的,为了减少不必要的逃逸,只能拿指针开刀了。

大多数情况下,性能优化都会为程序带来一定的复杂度。建议实际项目中还是怎么方便怎么写,功能完成后通过性能分析找到瓶颈所在,再对局部进行优化。

Golang 1.14中内存分配、清扫和内存回收

Golang的内存分配是由golang runtime完成,其内存分配方案借鉴自tcmalloc。

主要特点就是

本文中的element指一定大小的内存块是内存分配的概念,并为出现在golang runtime源码中

本文讲述x8664架构下的内存分配

Golang 内存分配有下面几个主要结构

Tiny对象是指内存尺寸小于16B的对象,这类对象的分配使用mcache的tiny区域进行分配。当tiny区域空间耗尽时刻,它会从mcache.alloc[tinySpanClass]指向的mspan中找到空闲的区域。当然如果mcache中span空间也耗尽,它会触发从mcentral补充mspan到mcache的流程。

小对象是指对象尺寸在(16B,32KB]之间的对象,这类对象的分配原则是:

1、首先根据对象尺寸将对象归为某个SpanClass上,这个SpanClass上所有的element都是一个统一的尺寸。

2、从mcache.alloc[SpanClass]找到mspan,看看有无空闲的element,如果有分配成功。如果没有继续。

3、从mcentral.allocSpan[SpanClass]的nonempty和emtpy中找到合适的mspan,返回给mcache。如果没有找到就进入mcentral.grow()—mheap.alloc()分配新的mspan给mcentral。

大对象指尺寸超出32KB的对象,此时直接从mheap中分配,不会走mcache和mcentral,直接走mheap.alloc()分配一个SpanClass==0 的mspan表示这部分分配空间。

对于程序分配常用的tiny和小对象的分配,可以通过无锁的mcache提升分配性能。mcache不足时刻会拿mcentral的锁,然后从mcentral中充mspan 给mcache。大对象直接从mheap 中分配。

在x8664环境上,golang管理的有效的程序虚拟地址空间实质上只有48位。在mheap中有一个pages pageAlloc成员用于管理golang堆内存的地址空间。golang从os中申请地址空间给自己管理,地址空间申请下来以后,golang会将地址空间根据实际使用情况标记为free或者alloc。如果地址空间被分配给mspan或大对象后,那么被标记为alloc,反之就是free。

Golang认为地址空间有以下4种状态:

Golang同时定义了下面几个地址空间操作函数:

在mheap结构中,有一个名为pages成员,它用于golang 堆使用虚拟地址空间进行管理。其类型为pageAlloc

pageAlloc 结构表示的golang 堆的所有地址空间。其中最重要的成员有两个:

在golang的gc流程中会将未使用的对象标记为未使用,但是这些对象所使用的地址空间并未交还给os。地址空间的申请和释放都是以golang的page为单位(实际以chunk为单位)进行的。sweep的最终结果只是将某个地址空间标记可被分配,并未真正释放地址空间给os,真正释放是后文的scavenge过程。

在gc mark结束以后会使用sweep()去尝试free一个span;在mheap.alloc 申请mspan时刻,也使用sweep去清扫一下。

清扫mspan主要涉及到下面函数

如上节所述,sweep只是将page标记为可分配,但是并未把地址空间释放;真正的地址空间释放是scavenge过程。

真正的scavenge是由pageAlloc.scavenge()—sysUnused()将扫描到待释放的chunk所表示的地址空间释放掉(使用sysUnused()将地址空间还给os)

golang的scavenge过程有两种:

go语言new一个变量后怎么释放

go语言和java类似

不需要人为的释放内存

当所有的引用都失效后

系统会自动回收内存的。


文章标题:go语言new后回收 go语言 cgo
网站URL:http://cqcxhl.cn/article/dogdgoo.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP