重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

跳表代码实现java 跳表代码实现

数据结构课程设计求大神帮忙实现跳表动态演示

与分析基本要求① 构造并实现跳表(Skip List)的ADT ADT办

网站建设哪家好,找创新互联建站!专注于网页设计、网站建设、微信开发、成都微信小程序、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了溧阳免费建站欢迎大家使用!

比较顺的对待

跳跃表(SkipList)

跳跃表是一种基于有序链表的拓展,简称跳表。

下面正式开始了哦,跟着思路来,非常简单理解:

给定一个有序链表:

1-2-3-5-6-7-8

跳表的思想就是利用了类似索引的思想,提取出链表中的部分关键节点,然后再用二分查找。

上面的有序链表,把奇数作为关键节点提取出来:

上面只是介绍了基本思想,其实还可以继续优化,看到这别担心,难度不会增加,也非常好理解:

既然上面提取了一层节点作为索引,那是不是也可以进一步提取?

有了2级索引后,插入的节点可以先和2级索引比较,确定大体范围;然后再和1级索引比较;最后再回到原链表,找到并插入对应的位置。

节点多的时候还可以进一步提取,保证每一层是上一层节点的一半。提取的极限是同一层只有两个节点的时候,因为一个节点比较没有意义。

到这里,多层链表结构就提取完了,这就是跳跃表。

当大量新节点通过逐层比较插入到链表中后,上层节点就会显得不够用,这就需要从新节点中“提拔”一部分节点到上一层,问题就是“提拔”谁呢(如何选择索引)?

跳表设计者采用了“抛硬币”的方法,随机决定新节点是否提拔。因为跳表的添加和删除的节点是不可预测的,很难用算法保证跳表的索引分布始终均匀。虽然抛硬币的方式不能保证绝对均匀,但大体上是趋于均匀的。

比如说,9插入到链表后,开始分析:

跳跃表插入操作的时间复杂度是O(logN),而这种数据结构所占空间是2N,既空间复杂度是 O(N)。

删除的时候只要在索引层找到要删除的节点,然后删除每一层相同的节点即可。如果某一层删到只剩下一个,那么整层都可以删掉。比如删除5:

跳跃表删除操作的时间复杂度是O(logN)。

跳表维持结构平衡的成本较低,完全靠随机。二叉查找树在多次插入和删除后需要重新保持自平衡。

Redis的五种数据类型之一Sorted-set(zset)这种有序集合,正是对于跳跃表的改进和应用。

还有Java中的ConcurrentSkipListMap和ConcurrentSkipListSet内部都是用跳表的数据结构。

java是否可以实现心跳的程序

java是可以实现心跳的程序的。

心跳顾名思义就是每隔一段时间执行,或者轮询查询状态,可以使用timer来实现,代码如下:

定时器可以实现

//1000毫秒,固定时间,每隔1秒钟执行一次actionPerformed方法

javax.swing.Timer clock = new javax.swing.Timer(1000,new ActionListener(){

public void actionPerformed(ActionEvent e) {

//执行心跳方法

/**...*/

//调用其他方法

/**...*/

}

});

clock.start();

可以独立用个线程管理,也可以直接写在主线程中

javase线程怎么存储到容器

Java 并发重要知识点

java 线程池

ThreadPoolExecutor 类分析

ThreadPoolExecutor 类中提供的四个构造方法。我们来看最长的那个,其余三个都是在这个构造方法的基础上产生(其他几个构造方法说白点都是给定某些默认参数的构造方法比如默认制定拒绝策略是什么)。

/**

* 用给定的初始参数创建一个新的ThreadPoolExecutor。

*/

public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量

int maximumPoolSize,//线程池的最大线程数

long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间

TimeUnit unit,//时间单位

BlockingQueueRunnable workQueue,//任务队列,用来储存等待执行任务的队列

ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可

RejectedExecutionHandler handler//拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务

) {

if (corePoolSize 0 ||

maximumPoolSize = 0 ||

maximumPoolSize corePoolSize ||

keepAliveTime 0)

throw new IllegalArgumentException();

if (workQueue == null || threadFactory == null || handler == null)

throw new NullPointerException();

this.corePoolSize = corePoolSize;

this.maximumPoolSize = maximumPoolSize;

this.workQueue = workQueue;

this.keepAliveTime = unit.toNanos(keepAliveTime);

this.threadFactory = threadFactory;

this.handler = handler;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

下面这些对创建非常重要,在后面使用线程池的过程中你一定会用到!所以,务必拿着小本本记清楚。

ThreadPoolExecutor 3 个最重要的参数:

corePoolSize : 核心线程数线程数定义了最小可以同时运行的线程数量。

maximumPoolSize : 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。

workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。

ThreadPoolExecutor其他常见参数 :

keepAliveTime:当线程池中的线程数量大于 corePoolSize 的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁;

unit : keepAliveTime 参数的时间单位。

threadFactory :executor 创建新线程的时候会用到。

handler :饱和策略。关于饱和策略下面单独介绍一下。

下面这张图可以加深你对线程池中各个参数的相互关系的理解(图片来源:《Java 性能调优实战》):

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nzbqGRz9-1654600571133)()]

ThreadPoolExecutor 饱和策略定义:

如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,ThreadPoolTaskExecutor 定义一些策略:

ThreadPoolExecutor.AbortPolicy :抛出 RejectedExecutionException来拒绝新任务的处理。

ThreadPoolExecutor.CallerRunsPolicy :调用执行自己的线程运行任务,也就是直接在调用execute方法的线程中运行(run)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。

ThreadPoolExecutor.DiscardPolicy :不处理新任务,直接丢弃掉。

ThreadPoolExecutor.DiscardOldestPolicy : 此策略将丢弃最早的未处理的任务请求。

举个例子:

Spring 通过 ThreadPoolTaskExecutor 或者我们直接通过 ThreadPoolExecutor 的构造函数创建线程池的时候,当我们不指定 RejectedExecutionHandler 饱和策略的话来配置线程池的时候默认使用的是 ThreadPoolExecutor.AbortPolicy。在默认情况下,ThreadPoolExecutor 将抛出 RejectedExecutionException 来拒绝新来的任务 ,这代表你将丢失对这个任务的处理。 对于可伸缩的应用程序,建议使用 ThreadPoolExecutor.CallerRunsPolicy。当最大池被填满时,此策略为我们提供可伸缩队列。(这个直接查看 ThreadPoolExecutor 的构造函数源码就可以看出,比较简单的原因,这里就不贴代码了。)

推荐使用 ThreadPoolExecutor 构造函数创建线程池

在《阿里巴巴 Java 开发手册》“并发处理”这一章节,明确指出线程资源必须通过线程池提供,不允许在应用中自行显式创建线程。

为什么呢?

使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源开销,解决资源不足的问题。如果不使用线程池,有可能会造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题。

另外,《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 构造函数的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险

Executors 返回线程池对象的弊端如下(后文会详细介绍到):

FixedThreadPool 和 SingleThreadExecutor : 允许请求的队列长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致 OOM。

CachedThreadPool 和 ScheduledThreadPool : 允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。

方式一:通过ThreadPoolExecutor构造函数实现(推荐)通过构造方法实现

方式二:通过 Executor 框架的工具类 Executors 来实现 我们可以创建三种类型的 ThreadPoolExecutor:

FixedThreadPool

SingleThreadExecutor

CachedThreadPool

对应 Executors 工具类中的方法如图所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YGd4ygZu-1654600571136)()]

正确配置线程池参数

说到如何给线程池配置参数,美团的骚操作至今让我难忘(后面会提到)!

我们先来看一下各种书籍和博客上一般推荐的配置线程池参数的方式,可以作为参考!

常规操作

很多人甚至可能都会觉得把线程池配置过大一点比较好!我觉得这明显是有问题的。就拿我们生活中非常常见的一例子来说:并不是人多就能把事情做好,增加了沟通交流成本。你本来一件事情只需要 3 个人做,你硬是拉来了 6 个人,会提升做事效率嘛?我想并不会。 线程数量过多的影响也是和我们分配多少人做事情一样,对于多线程这个场景来说主要是增加了上下文切换成本。不清楚什么是上下文切换的话,可以看我下面的介绍。

上下文切换:

多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换。

上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的 CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。

Linux 相比与其他操作系统(包括其他类 Unix 系统)有很多的优点,其中有一项就是,其上下文切换和模式切换的时间消耗非常少。

类比于实现世界中的人类通过合作做某件事情,我们可以肯定的一点是线程池大小设置过大或者过小都会有问题,合适的才是最好。

如果我们设置的线程池数量太小的话,如果同一时间有大量任务/请求需要处理,可能会导致大量的请求/任务在任务队列中排队等待执行,甚至会出现任务队列满了之后任务/请求无法处理的情况,或者大量任务堆积在任务队列导致 OOM。这样很明显是有问题的! CPU 根本没有得到充分利用。

但是,如果我们设置线程数量太大,大量线程可能会同时在争取 CPU 资源,这样会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。

有一个简单并且适用面比较广的公式:

CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1,比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。

I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。

如何判断是 CPU 密集任务还是 IO 密集任务?

CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内存中对大量数据进行排序。但凡涉及到网络读取,文件读取这类都是 IO 密集型,这类任务的特点是 CPU 计算耗费时间相比于等待 IO 操作完成的时间来说很少,大部分时间都花在了等待 IO 操作完成上。

美团的骚操作

美团技术团队在《Java线程池实现原理及其在美团业务中的实践》open in new window这篇文章中介绍到对线程池参数实现可自定义配置的思路和方法。

美团技术团队的思路是主要对线程池的核心参数实现自定义可配置。这三个核心参数是:

corePoolSize : 核心线程数线程数定义了最小可以同时运行的线程数量。

maximumPoolSize : 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。

workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。

为什么是这三个参数?

我在这篇《新手也能看懂的线程池学习总结》open in new window 中就说过这三个参数是 ThreadPoolExecutor 最重要的参数,它们基本决定了线程池对于任务的处理策略。

如何支持参数动态配置? 且看 ThreadPoolExecutor 提供的下面这些方法。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Sm89qdJZ-1654600571137)()]

格外需要注意的是corePoolSize, 程序运行期间的时候,我们调用 setCorePoolSize() 这个方法的话,线程池会首先判断当前工作线程数是否大于corePoolSize,如果大于的话就会回收工作线程。

另外,你也看到了上面并没有动态指定队列长度的方法,美团的方式是自定义了一个叫做 ResizableCapacityLinkedBlockIngQueue 的队列(主要就是把LinkedBlockingQueue的capacity 字段的final关键字修饰给去掉了,让它变为可变的)。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cmNN5yAL-1654600571138)()]

还没看够?推荐 why神的[《如何设置线程池参数?美团给出了一个让面试官虎躯一震的回答。》open in new window](如何设置线程池参数?美团给出了一个让面试官虎躯一震的回答。 (qq.com))这篇文章,深度剖析,很不错哦!

Java 常见并发容器

JDK 提供的这些容器大部分在 java.util.concurrent 包中。

ConcurrentHashMap : 线程安全的 HashMap

CopyOnWriteArrayList : 线程安全的 List,在读多写少的场合性能非常好,远远好于 Vector。

ConcurrentLinkedQueue : 高效的并发队列,使用链表实现。可以看做一个线程安全的 LinkedList,这是一个非阻塞队列。

BlockingQueue : 这是一个接口,JDK 内部通过链表、数组等方式实现了这个接口。表示阻塞队列,非常适合用于作为数据共享的通道。

ConcurrentSkipListMap : 跳表的实现。这是一个 Map,使用跳表的数据结构进行快速查找。

ConcurrentHashMap

我们知道 HashMap 不是线程安全的,在并发场景下如果要保证一种可行的方式是使用 Collections.synchronizedMap() 方法来包装我们的 HashMap。但这是通过使用一个全局的锁来同步不同线程间的并发访问,因此会带来不可忽视的性能问题。

所以就有了 HashMap 的线程安全版本—— ConcurrentHashMap 的诞生。

在 ConcurrentHashMap 中,无论是读操作还是写操作都能保证很高的性能:在进行读操作时(几乎)不需要加锁,而在写操作时通过锁分段技术只对所操作的段加锁而不影响客户端对其它段的访问。

CopyOnWriteArrayList

CopyOnWriteArrayList 简介

public class CopyOnWriteArrayListE

extends Object

implements ListE, RandomAccess, Cloneable, Serializable

在很多应用场景中,读操作可能会远远大于写操作。由于读操作根本不会修改原有的数据,因此对于每次读取都进行加锁其实是一种资源浪费。我们应该允许多个线程同时访问 List 的内部数据,毕竟读取操作是安全的。

这和我们之前在多线程章节讲过 ReentrantReadWriteLock 读写锁的思想非常类似,也就是读读共享、写写互斥、读写互斥、写读互斥。JDK 中提供了 CopyOnWriteArrayList 类比相比于在读写锁的思想又更进一步。为了将读取的性能发挥到极致,CopyOnWriteArrayList 读取是完全不用加锁的,并且更厉害的是:写入也不会阻塞读取操作。只有写入和写入之间需要进行同步等待。这样一来,读操作的性能就会大幅度提升。那它是怎么做的呢?

CopyOnWriteArrayList 是如何做到的?

CopyOnWriteArrayList 类的所有可变操作(add,set 等等)都是通过创建底层数组的新副本来实现的。当 List 需要被修改的时候,我并不修改原有内容,而是对原有数据进行一次复制,将修改的内容写入副本。写完之后,再将修改完的副本替换原来的数据,这样就可以保证写操作不会影响读操作了。

从 CopyOnWriteArrayList 的名字就能看出 CopyOnWriteArrayList 是满足 CopyOnWrite 的。所谓 CopyOnWrite 也就是说:在计算机,如果你想要对一块内存进行修改时,我们不在原有内存块中进行写操作,而是将内存拷贝一份,在新的内存中进行写操作,写完之后呢,就将指向原来内存指针指向新的内存,原来的内存就可以被回收掉了。

CopyOnWriteArrayList 读取和写入源码简单分析

CopyOnWriteArrayList 读取操作的实现

读取操作没有任何同步控制和锁操作,理由就是内部数组 array 不会发生修改,只会被另外一个 array 替换,因此可以保证数据安全。

/** The array, accessed only via getArray/setArray. */

private transient volatile Object[] array;

public E get(int index) {

return get(getArray(), index);

}

@SuppressWarnings("unchecked")

private E get(Object[] a, int index) {

return (E) a[index];

}

final Object[] getArray() {

return array;

}

CopyOnWriteArrayList 写入操作的实现

CopyOnWriteArrayList 写入操作 add()方法在添加集合的时候加了锁,保证了同步,避免了多线程写的时候会 copy 出多个副本出来。

/**

* Appends the specified element to the end of this list.

*

* @param e element to be appended to this list

* @return {@code true} (as specified by {@link Collection#add})

*/

public boolean add(E e) {

final ReentrantLock lock = this.lock;

lock.lock();//加锁

try {

Object[] elements = getArray();

int len = elements.length;

Object[] newElements = Arrays.copyOf(elements, len + 1);//拷贝新数组

newElements[len] = e;

setArray(newElements);

return true;

} finally {

lock.unlock();//释放锁

}

}

ConcurrentLinkedQueue

Java 提供的线程安全的 Queue 可以分为阻塞队列和非阻塞队列,其中阻塞队列的典型例子是 BlockingQueue,非阻塞队列的典型例子是 ConcurrentLinkedQueue,在实际应用中要根据实际需要选用阻塞队列或者非阻塞队列。 阻塞队列可以通过加锁来实现,非阻塞队列可以通过 CAS 操作实现。

从名字可以看出,ConcurrentLinkedQueue这个队列使用链表作为其数据结构.ConcurrentLinkedQueue 应该算是在高并发环境中性能最好的队列了。它之所有能有很好的性能,是因为其内部复杂的实现。

ConcurrentLinkedQueue 内部代码我们就不分析了,大家知道 ConcurrentLinkedQueue 主要使用 CAS 非阻塞算法来实现线程安全就好了。

ConcurrentLinkedQueue 适合在对性能要求相对较高,同时对队列的读写存在多个线程同时进行的场景,即如果对队列加锁的成本较高则适合使用无锁的 ConcurrentLinkedQueue 来替代。

BlockingQueue

BlockingQueue 简介

上面我们己经提到了 ConcurrentLinkedQueue 作为高性能的非阻塞队列。下面我们要讲到的是阻塞队列——BlockingQueue。阻塞队列(BlockingQueue)被广泛使用在“生产者-消费者”问题中,其原因是 BlockingQueue 提供了可阻塞的插入和移除的方法。当队列容器已满,生产者线程会被阻塞,直到队列未满;当队列容器为空时,消费者线程会被阻塞,直至队列非空时为止。

BlockingQueue 是一个接口,继承自 Queue,所以其实现类也可以作为 Queue 的实现来使用,而 Queue 又继承自 Collection 接口。下面是 BlockingQueue 的相关实现类:

BlockingQueue 的实现类

下面主要介绍一下 3 个常见的 BlockingQueue 的实现类:ArrayBlockingQueue、LinkedBlockingQueue 、PriorityBlockingQueue 。

ArrayBlockingQueue

ArrayBlockingQueue 是 BlockingQueue 接口的有界队列实现类,底层采用数组来实现。

public class ArrayBlockingQueueE

extends AbstractQueueE

implements BlockingQueueE, Serializable{}

ArrayBlockingQueue 一旦创建,容量不能改变。其并发控制采用可重入锁 ReentrantLock ,不管是插入操作还是读取操作,都需要获取到锁才能进行操作。当队列容量满时,尝试将元素放入队列将导致操作阻塞;尝试从一个空队列中取一个元素也会同样阻塞。

ArrayBlockingQueue 默认情况下不能保证线程访问队列的公平性,所谓公平性是指严格按照线程等待的绝对时间顺序,即最先等待的线程能够最先访问到 ArrayBlockingQueue。而非公平性则是指访问 ArrayBlockingQueue 的顺序不是遵守严格的时间顺序,有可能存在,当 ArrayBlockingQueue 可以被访问时,长时间阻塞的线程依然无法访问到 ArrayBlockingQueue。如果保证公平性,通常会降低吞吐量。如果需要获得公平性的 ArrayBlockingQueue,可采用如下代码:

private static ArrayBlockingQueueInteger blockingQueue = new ArrayBlockingQueueInteger(10,true);

1

1

LinkedBlockingQueue

LinkedBlockingQueue 底层基于单向链表实现的阻塞队列,可以当做无界队列也可以当做有界队列来使用,同样满足 FIFO 的特性,与 ArrayBlockingQueue 相比起来具有更高的吞吐量,为了防止 LinkedBlockingQueue 容量迅速增,损耗大量内存。通常在创建 LinkedBlockingQueue 对象时,会指定其大小,如果未指定,容量等于 Integer.MAX_VALUE 。

相关构造方法:

/**

*某种意义上的无界队列

* Creates a {@code LinkedBlockingQueue} with a capacity of

* {@link Integer#MAX_VALUE}.

*/

public LinkedBlockingQueue() {

this(Integer.MAX_VALUE);

}

/**

*有界队列

* Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.

*

* @param capacity the capacity of this queue

* @throws IllegalArgumentException if {@code capacity} is not greater

* than zero

*/

public LinkedBlockingQueue(int capacity) {

if (capacity = 0) throw new IllegalArgumentException();

this.capacity = capacity;

last = head = new NodeE(null);

}

PriorityBlockingQueue

PriorityBlockingQueue 是一个支持优先级的无界阻塞队列。默认情况下元素采用自然顺序进行排序,也可以通过自定义类实现 compareTo() 方法来指定元素排序规则,或者初始化时通过构造器参数 Comparator 来指定排序规则。

PriorityBlockingQueue 并发控制采用的是可重入锁 ReentrantLock,队列为无界队列(ArrayBlockingQueue 是有界队列,LinkedBlockingQueue 也可以通过在构造函数中传入 capacity 指定队列最大的容量,但是 PriorityBlockingQueue 只能指定初始的队列大小,后面插入元素的时候,如果空间不够的话会自动扩容)。

简单地说,它就是 PriorityQueue 的线程安全版本。不可以插入 null 值,同时,插入队列的对象必须是可比较大小的(comparable),否则报 ClassCastException 异常。它的插入操作 put 方法不会 block,因为它是无界队列(take 方法在队列为空的时候会阻塞)。

推荐文章: 《解读 Java 并发队列 BlockingQueue》open in new window

ConcurrentSkipListMap

下面这部分内容参考了极客时间专栏《数据结构与算法之美》open in new window以及《实战 Java 高并发程序设计》。

为了引出 ConcurrentSkipListMap,先带着大家简单理解一下跳表。

对于一个单链表,即使链表是有序的,如果我们想要在其中查找某个数据,也只能从头到尾遍历链表,这样效率自然就会很低,跳表就不一样了。跳表是一种可以用来快速查找的数据结构,有点类似于平衡树。它们都可以对元素进行快速的查找。但一个重要的区别是:对平衡树的插入和删除往往很可能导致平衡树进行一次全局的调整。而对跳表的插入和删除只需要对整个数据结构的局部进行操作即可。这样带来的好处是:在高并发的情况下,你会需要一个全局锁来保证整个平衡树的线程安全。而对于跳表,你只需要部分锁即可。这样,在高并发环境下,你就可以拥有更好的性能。而就查询的性能而言,跳表的时间复杂度也是 O(logn) 所以在并发数据结构中,JDK 使用跳表来实现一个 Map。

跳表的本质是同时维护了多个链表,并且链表是分层的,

2级索引跳表

最低层的链表维护了跳表内所有的元素,每上面一层链表都是下面一层的子集。

跳表内的所有链表的元素都是排序的。查找时,可以从顶级链表开始找。一旦发现被查找的元素大于当前链表中的取值,就会转入下一层链表继续找。这也就是说在查找过程中,搜索是跳跃式的。如上图所示,在跳表中查找元素 18。

在跳表中查找元素18

查找 18 的时候原来需要遍历 18 次,现在只需要 7 次即可。针对链表长度比较大的时候,构建索引查找效率的提升就会非常明显。

从上面很容易看出,跳表是一种利用空间换时间的算法。

使用跳表实现 Map 和使用哈希算法实现 Map 的另外一个不同之处是:哈希并不会保存元素的顺序,而跳表内所有的元素都是排序的。因此在对跳表进行遍历时,你会得到一个有序的结果。所以,如果你的应用需要有序性,那么跳表就是你不二的选择。JDK 中实现这一数据结构的类是 ConcurrentSkipListMap。


新闻标题:跳表代码实现java 跳表代码实现
网页路径:http://cqcxhl.cn/article/doicepo.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP