重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

怎么在python中使用optimize-创新互联

怎么在python中使用optimize?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

靖远ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!

Python的优点有哪些

1、简单易用,与C/C++、Java、C# 等传统语言相比,Python对代码格式的要求没有那么严格;2、Python属于开源的,所有人都可以看到源代码,并且可以被移植在许多平台上使用;3、Python面向对象,能够支持面向过程编程,也支持面向对象编程;4、Python是一种解释性语言,Python写的程序不需要编译成二进制代码,可以直接从源代码运行程序;5、Python功能强大,拥有的模块众多,基本能够实现所有的常见功能。

非线性方程组求解

SciPy中对非线性方程组求解是fslove()函数,它的调用形式一般为fslove(fun, x0),fun是计算非线性方程组的误差函数,它需要一个参数x,fun依靠x来计算线性方程组的每个方程的值(或者叫误差),x0是x的一个初始值。

"""
计算非线性方程组:
  5x1+3 = 0
  4x0^2-2sin(x1x2)=0
  x1x2-1.5=0
"""
## 误差函数
def fun(x):
  x0,x1,x2 = x.tolist()
  return[5*x1+3,4x0^2-2sin(x1x2),x1x2-1.5]

result = optimize.fsolve(fun,[1,1,1])
## result
[-0.70622057  -0.6  -2.5]

在计算非线性方程中的解时,比如像坐标上升算法,其中需要用到未知数的导数,同样,scipy的fslove()也提供了fprime参数传递未知数的雅各比矩阵从而加速计算,传递的雅各比矩阵每一行时某一方程对各个未知数的导数。对于上面的例子,我们可以写下如下的雅各比矩阵传入。

def j(x):
  x0,x1,x2 = x.tolist()
  return[[0,5,0],[8*x0,-2*x2*cos(x1*x2],[0,x2,x1]]

result = optimize.fsolve(fun,[1,1,1],fprime=j)
#result
[-0.70622057  -0.6  -2.5]

scipy的内部在实现fslove时应该时应该是利用了坐标上升算法或者梯度相关优化算法,但本人没有考证,有兴趣的可以看看源码。

最小二乘拟合

关于最小二乘算法的理论这里并不想谈,网上解释的文章也挺多,在 optimize模块中,可以使用leastsq()对数据进行最小二乘拟合计算。 leastsq()的用法很简单,只需要将计箅误差的函数和待确定参数的初始值传递给它即可。

x = np.array([8.19,2.72,6.39,8.71,4.7,2.66,3.78])
y = np.array([7.01,2.78,6.47,6.71,4.1,4.23,4.05])
def residual(p):
  k,b = p
  return y-(k*x+b)
r = optimize.leastsq(residual,[1,0])
k,b = r[0]
# print k
.613495349193
# print b
.79409254326
def func(x,p):
  """
    计算的正弦波 :A*sin(2*pi*k*x+theta)
  """
  A,k,theta = p
  return A*sin(2*np.pi*k*x+theta)

def redis(p,y,x):
  return y-func(x,p)

x = np.linspace(0,2*np.pi,100)
A,k,theta = 10,0.34,np.pi/6
y0 = func(x,[A,k,theta])
# 加入噪声
np.random.seed(0)
y1 = y0+2*np.random.randn(len(x))
p0 = [7,0.40,0]
# p0是A,k,theta的初始值,y1,x要拟合的数据
plsq = optimize.leastsq(redis, p0,args=(y1,x))
print [A,k,theta] #真是的参数值
print plsq[0]  #拟合后的参数值

对于像正弦波或者余弦波的曲线拟合,optimize提供curve_fit()函数,它的使用方式和leastq()稍有不同,它直接计算曲线的值,比如上面的拟合正弦波可以用cureve_fit()来写。

def func2(x,p):
  """
    计算的正弦波 :A*sin(2*pi*k*x+theta)
  """
  A,k,theta = p
  return A*sin(2*np.pi*k*x+theta)
ret,_=optimize.curve_fit(func2,x,y1,p0=p0)

该函数有一个缺点就是对于初始值敏感,如果初始频率和真实频率值差太多,会导致最后无法收敛到真是频率。

局部最小值

optimize模块还提供了常用的最小值算法如:Nelder-Mead、Powell、CG、BFGS、Newton-CG等,在这些最小值计算时,往往会传入一阶导数矩阵(雅各比矩阵)或者二阶导数矩阵(黑塞矩阵)从而加速收敛,这些最优化算法往往不能保证收敛到全局最小值,大部分会收敛到局部极小值。这些函数的调用方式为:

optimize.minimize(target_fun,init_val,method,jac,hess) 
target_fun:函数的表达式计算; 
init_val:初始值; 
method:最小化的算法; 
jac:雅各比矩阵 
hess:黑塞矩阵。

全局最小值算法

全局最小值使用optimize.basinhopping()来实现,这个函数首先要定义一个误差计算方式,比如平方误差函数,niter时迭代的次数,最后还需要一个局部极小值优化方法,minimizer_kwargs传入。比如上面的正弦函数拟合:

def func1(x,p):
  """
    计算的正弦波 :A*sin(2*pi*k*x+theta)
  """
  A,k,theta = p
  return A*sin(2*np.pi*k*x+theta)
def func_error(p,y,x):
  return np.sum((y-func1(x,p)**2)
result = optimize.basinhopping(func_error,[1,1,1],niter=10,
              minimizer_kwargs={"method":"L-BFGS-B",
                        "args":(y1,x1)})
## [1,1,1]是传入的初始值,args是需要拟合的数据

看完上述内容,你们掌握怎么在python中使用optimize的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联成都网站设计公司行业资讯频道,感谢各位的阅读!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前标题:怎么在python中使用optimize-创新互联
文章网址:http://cqcxhl.cn/article/dojgpp.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP