重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
了解python3数据可视化字段是什么?这个问题可能是我们日常学习或工作经常见到的。希望通过这个问题能让你收获颇深。下面是小编给大家带来的参考内容,让我们一起来看看吧!
个旧ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:028-86922220(备注:SSL证书合作)期待与您的合作!一、数据可视化介绍
数据可视化是指将数据放在可视环境中、进一步理解数据的技术,可以通过它更加详细地了解隐藏在数据表面之下的模式、趋势和相关性。
Python提供了很多数据可视化的库:
l matplotlib
l pandas
l matlpotlib和pandas结合
利用pandas进行数据读取、数据清洗和数据选取等操作,再使用matlpotlib显示数据。
二、Python数据可视化学习
l 了解几大常用的可视化库,比如特性、使用场景、效果图等;
l 选择一款适合自己的第三方库,比如要做国内地图类的项目,选择pyecharts;
l 学习该库的绘图原理,各种函数调用和参数修改,就是所谓的"调参";
l 不断练习、练习、练习;
三、matplotlib简介和简单使用
matplotlib画图的子库:
l pyplot子库
l 提供了和matlab类似的绘图API,方便用户快速绘制2D图表。
l pylab模块
l 其中包括了许多numpy和pyplot中常用的函数,方便用户快速进行计算和绘图,可以用于IPython中的快速交互式使用。
使用matplotlib快速绘图导入库和创建绘图对象如下:
import matplotlib.pyplot as plt plt.figure(figsize=(8,4))
实例:
四、pyplot画图简单使用如下:
import numpy as np import matplotlib.pyplot as plt # 首先载入matplotlib的绘图模块pyplot,并且重命名为plt x = np.linspace(0, 10, 1000) y = np.sin(x) z = np.cos(x**2) plt.figure(figsize=(8,4)) #2 创建绘图对象 plt.plot(x,y,label="$sin(x)$",color="red",linewidth=2) plt.plot(x,z,"b--",label="$cos(x^2)$") plt.xlabel("Time(s)") plt.ylabel("Volt") plt.title("PyPlot First Example") plt.ylim(-1.2,1.2) plt.legend() plt.show()
显示:
其中:
plt.plot(x,y,label="$sin(x)$",color="red",linewidth=2) plt.plot(x,z,"b--",label="$cos(x^2)$")
感谢各位的阅读!看完上述内容,你们对python3数据可视化字段是什么大概了解了吗?希望文章内容对大家有所帮助。如果想了解更多相关文章内容,欢迎关注创新互联行业资讯频道。