重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

最优化函数python 最优化函数 拉格朗日

#Python干货#python实现——最优化算法

函数详见rres,此代码使该算法运行了两次

创新互联主营富川网站建设的网络公司,主营网站建设方案,成都App定制开发,富川h5小程序定制开发搭建,富川网站营销推广欢迎富川等地区企业咨询

收获:

这是我第一个实现的代码。学习完该算法以后,逻辑框架基本上就有了,剩下需要明确的就是对应的python的语言。于是我就开始了查找“如何定义函数”(详见mofan的优酷),“循环体”和“if条件语句”的格式()“数学符号”(详见mofan的优酷),以及print的使用

1.def是python中指定义,一般用来定义函数,如果需要深度学习搭建网络可用来定义网络。值得注意的一点是

我不清楚为什么,但是如果没有加的话,那个函数公式就是一个花瓶,就像一个结果输不出去。

2.最坑的就是逻辑。一开始逻辑没理清楚,或者说在代码上有疏漏,导致我将left和right放在了循环体里,结果可想而知。不过也是因为这个错误,我知道pycharm中的debug怎么用,挺简单的,百度一下就出来了。

3.不知道什么原因,看的莫烦视频中的print多个变量一起输出是没有办法在我的pycharm中使用的,出来的结果很奇怪。可能是因为我是win10不是ios吧。print如果多个变量一起输出必须是print("名字:%s,名字2:%s"%(a,b))结果输出就是名字:a ,名字2:b

关于python中数据变量。第一遍运行结果出现很明显不对,于是我采用了debug。结果发现,mid1处一直为1而不是1.5,于是就开始了解数据变量。起初我猜测python默认所有变量为整型,但是根据二分法的结果我意识到此猜测不对,所以要改整个file的变量格式没有必要。所以我就在mid1式子前面加了一个float,结果就显示为1.5了。但是如果我将整个式子用()括起来,前面加float,结果还是1。我不太理解为什么。不过我知道了python的数据格式是根据输入量决定的,也就是说你的输入量如果是整型,那么与其直接相关的计算输出结果一定是整型,而且还是不采用进位的整型。在我没有采用+float/+.0这两种方法之前,mid1~3全部是整型。

或者不再mid1前面加float,直接将输入量后面点个点就行

真的很想吐槽一下print,好麻烦啊啊啊啊每次都得弄个%s,而且有时候还不能放一起!!!!

不要问我掌握了什么,要问我现在写完这个代码后有多么的爱python的精度表示 :-)我决定以后只要再编写数学公式的代码都将输入量的小数学点后面补很多0

fibonacci函数定义,每次debug后我的手都是抖的O( _ )O~

不知道自己什么时候有的强迫症,只要是代码下面有“~”我就必须要消掉。笑哭。这个很简单,前四个除了费波纳茨,都很简单。

这个公式看起来很麻烦,便写的时候更要谨慎。我上回把那个2搁在了分号下面,结果很大,所以还是换算成0.5更好(PS:勿忘那长河般的0)。

虽然代码很长,但是主要是因为print太多。本打算在开头print,最后结果会漏掉最后一部分。懒得想其他办法了,直接就这样吧

一开始while里面写成了,导致run不出来。继而,debug也没法用。在网上一查才知道 “没联网”+“没选断点”。最后想尝试将else里面的内容输出来,结果发现run以后被刷屏了。于是改成i7以后还是不行,于是想着加一个break跳出循环,结果成效了。

然后刚刚由debug了一下,才知道原来是i+1在if里面,因为没有办法+1,所以i=6一直存在,就不断循环。因为加break也好,i+1也好,都可以。

这是我第一组自己实现的python代码,就是数学公式用python语言组装起来。刚开始的时候知道大概需要在语言中体现什么,但不太清楚。于是我就在网上找了几个二分法的,他们都各有不同,但框架都差不多,不过如果要用到我们的那个公式里还需要改变很多。然后我就开始分析我们的题,我发现大体需要两部分,一部分函数定义,一部分循环体。但我不知道如何定义函数,如何写数学公式,如何弄变量,也就是说一些小点不太会,所以我选择直接百度。因为我知道自己阅读的能力不错,相比于从视频中提取要素,我更擅长通过阅读获得要点。有目的性地找知识点,掌握地更牢固。

于是我就开始了第一个——二分法的编写。我发现,自己出现了很多错误而且有很多地方都很基础。但我依然没选择视频,而是将这些问题直接在百度上找,因为视频讲完或许你也没找到点。当然,这是一步一步走的,不是直接就将程序摆上去,一点一点改。

随着前两个的成功,我发现自己对于这些代码有了自信,似乎看透了他们的伪装,抓住了本质。除此之外,我还意识到自己自从8月份以后,学习能力似乎提高了不少,而且有了更为有效的学习方法。各方面都有了一定的觉醒。除了第一个找了几个牛头不对马嘴的代码,其他都是根据自己的逻辑写,逻辑通下来以后,对应语言中某一部分不知道如何翻译就去百度,其实这几个套路都一样或者说数学公式转化的套路都一样。

我还意识到,汇编其实是最难的语言,目前为止所学到的,因为很多都需要自己去定义,去死抠,需要记住大量的指令且不能灵活变通。但是其他的却只需要将一些对应的记下来就好。python真的挺简单的。而且,我发现自己今天似乎打开了新世界的大门,我爱上了这种充满了灵性的东西,充满了严谨的美丽,还有那未知的变化,我发现我似乎爱上了代码。可能不仅仅局限于python,这些语言都充满了挑战性。我觉得当你疑惑的时候,就需要相信直觉,至少我发现它很准

优化Python编程的4个妙招

1. Pandas.apply() – 特征工程瑰宝

Pandas 库已经非常优化了,但是大部分人都没有发挥它的最大作用。想想它一般会用于数据科学项目中的哪些地方。一般首先能想到的就是特征工程,即用已有特征创造新特征。其中最高效的方法之一就是Pandas.apply(),即Pandas中的apply函数。

在Pandas.apply()中,可以传递用户定义功能并将其应用到Pandas Series的所有数据点中。这个函数是Pandas库最好的扩展功能之一,它能根据所需条件分隔数据。之后便能将其有效应用到数据处理任务中。

2. Pandas.DataFrame.loc – Python数据操作绝妙技巧

所有和数据处理打交道的数据科学家(差不多所有人了!)都应该学会这个方法。

很多时候,数据科学家需要根据一些条件更新数据集中某列的某些值。Pandas.DataFrame.loc就是此类问题最优的解决方法。

3. Python函数向量化

另一种解决缓慢循环的方法就是将函数向量化。这意味着新建函数会应用于输入列表,并返回结果数组。在Python中使用向量化能至少迭代两次,从而加速计算。

事实上,这样不仅能加速代码运算,还能让代码更加简洁清晰。

4. Python多重处理

多重处理能使系统同时支持一个以上的处理器。

此处将数据处理分成多个任务,让它们各自独立运行。处理庞大的数据集时,即使是apply函数也显得有些迟缓。

关于优化Python编程的4个妙招,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他文章进行学习。

Python怎么做最优化

最优化

为什么要做最优化呢?因为在生活中,人们总是希望幸福值或其它达到一个极值,比如做生意时希望成本最小,收入最大,所以在很多商业情境中,都会遇到求极值的情况。

函数求根

这里「函数的根」也称「方程的根」,或「函数的零点」。

先把我们需要的包加载进来。import numpy as npimport scipy as spimport scipy.optimize as optimport matplotlib.pyplot as plt%matplotlib inline

函数求根和最优化的关系?什么时候函数是最小值或最大值?

两个问题一起回答:最优化就是求函数的最小值或最大值,同时也是极值,在求一个函数最小值或最大值时,它所在的位置肯定是导数为 0 的位置,所以要求一个函数的极值,必然要先求导,使其为 0,所以函数求根就是为了得到最大值最小值。

scipy.optimize 有什么方法可以求根?

可以用 scipy.optimize 中的 bisect 或 brentq 求根。f = lambda x: np.cos(x) - x # 定义一个匿名函数x = np.linspace(-5, 5, 1000) # 先生成 1000 个 xy = f(x) # 对应生成 1000 个 f(x)plt.plot(x, y); # 看一下这个函数长什么样子plt.axhline(0, color='k'); # 画一根横线,位置在 y=0

opt.bisect(f, -5, 5) # 求取函数的根0.7390851332155535plt.plot(x, y)plt.axhline(0, color='k')plt.scatter([_], [0], c='r', s=100); # 这里的 [_] 表示上一个 Cell 中的结果,这里是 x 轴上的位置,0 是 y 上的位置

求根有两种方法,除了上面介绍的 bisect,还有 brentq,后者比前者快很多。%timeit opt.bisect(f, -5, 5)%timeit opt.brentq(f, -5, 5)10000 loops, best of 3: 157 s per loopThe slowest run took 11.65 times longer than the fastest. This could mean that an intermediate result is being cached.10000 loops, best of 3: 35.9 s per loop

函数求最小化

求最小值就是一个最优化问题。求最大值时只需对函数做一个转换,比如加一个负号,或者取倒数,就可转成求最小值问题。所以两者是同一问题。

初始值对最优化的影响是什么?

举例来说,先定义个函数。f = lambda x: 1-np.sin(x)/xx = np.linspace(-20., 20., 1000)y = f(x)

当初始值为 3 值,使用 minimize 函数找到最小值。minimize 函数是在新版的 scipy 里,取代了以前的很多最优化函数,是个通用的接口,背后是很多方法在支撑。x0 = 3xmin = opt.minimize(f, x0).x # x0 是起始点,起始点最好离真正的最小值点不要太远plt.plot(x, y)plt.scatter(x0, f(x0), marker='o', s=300); # 起始点画出来,用圆圈表示plt.scatter(xmin, f(xmin), marker='v', s=300); # 最小值点画出来,用三角表示plt.xlim(-20, 20);

初始值为 3 时,成功找到最小值。

现在来看看初始值为 10 时,找到的最小值点。x0 = 10xmin = opt.minimize(f, x0).xplt.plot(x, y)plt.scatter(x0, f(x0), marker='o', s=300)plt.scatter(xmin, f(xmin), marker='v', s=300)plt.xlim(-20, 20);

由上图可见,当初始值为 10 时,函数找到的是局部最小值点,可见 minimize 的默认算法对起始点的依赖性。

那么怎么才能不管初始值在哪个位置,都能找到全局最小值点呢?

如何找到全局最优点?

可以使用 basinhopping 函数找到全局最优点,相关背后算法,可以看帮助文件,有提供论文的索引和出处。

我们设初始值为 10 看是否能找到全局最小值点。x0 = 10from scipy.optimize import basinhoppingxmin = basinhopping(f,x0,stepsize = 5).xplt.plot(x, y);plt.scatter(x0, f(x0), marker='o', s=300);plt.scatter(xmin, f(xmin), marker='v', s=300);plt.xlim(-20, 20);

当起始点在比较远的位置,依然成功找到了全局最小值点。

如何求多元函数最小值?

以二元函数为例,使用 minimize 求对应的最小值。def g(X): x,y = X return (x-1)**4 + 5 * (y-1)**2 - 2*x*yX_opt = opt.minimize(g, (8, 3)).x # (8,3) 是起始点print X_opt[ 1.88292611 1.37658521]fig, ax = plt.subplots(figsize=(6, 4)) # 定义画布和图形x_ = y_ = np.linspace(-1, 4, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, g((X, Y)), 50) # 等高线图ax.plot(X_opt[0], X_opt[1], 'r*', markersize=15) # 最小点的位置是个元组ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax) # colorbar 表示颜色越深,高度越高fig.tight_layout()

画3D 图。from mpl_toolkits.mplot3d import Axes3Dfrom matplotlib import cmfig = plt.figure()ax = fig.gca(projection='3d')x_ = y_ = np.linspace(-1, 4, 100)X, Y = np.meshgrid(x_, y_)surf = ax.plot_surface(X, Y, g((X,Y)), rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)cset = ax.contour(X, Y, g((X,Y)), zdir='z',offset=-5, cmap=cm.coolwarm)fig.colorbar(surf, shrink=0.5, aspect=5);

曲线拟合

曲线拟合和最优化有什么关系?

曲线拟合的问题是,给定一组数据,它可能是沿着一条线散布的,这时要找到一条最优的曲线来拟合这些数据,也就是要找到最好的线来代表这些点,这里的最优是指这些点和线之间的距离是最小的,这就是为什么要用最优化问题来解决曲线拟合问题。

举例说明,给一些点,找到一条线,来拟合这些点。

先给定一些点:N = 50 # 点的个数m_true = 2 # 斜率b_true = -1 # 截距dy = 2.0 # 误差np.random.seed(0)xdata = 10 * np.random.random(N) # 50 个 x,服从均匀分布ydata = np.random.normal(b_true + m_true * xdata, dy) # dy 是标准差plt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');

上面的点整体上呈现一个线性关系,要找到一条斜线来代表这些点,这就是经典的一元线性回归。目标就是找到最好的线,使点和线的距离最短。要优化的函数是点和线之间的距离,使其最小。点是确定的,而线是可变的,线是由参数值,斜率和截距决定的,这里就是要通过优化距离找到最优的斜率和截距。

点和线的距离定义如下:def chi2(theta, x, y): return np.sum(((y - theta[0] - theta[1] * x)) ** 2)

上式就是误差平方和。

误差平方和是什么?有什么作用?

误差平方和公式为:

误差平方和大,表示真实的点和预测的线之间距离太远,说明拟合得不好,最好的线,应该是使误差平方和最小,即最优的拟合线,这里是条直线。

误差平方和就是要最小化的目标函数。

找到最优的函数,即斜率和截距。theta_guess = [0, 1] # 初始值theta_best = opt.minimize(chi2, theta_guess, args=(xdata, ydata)).xprint(theta_best)[-1.01442005 1.93854656]

上面两个输出即是预测的直线斜率和截距,我们是根据点来反推直线的斜率和截距,那么真实的斜率和截距是多少呢?-1 和 2,很接近了,差的一点是因为有噪音的引入。xfit = np.linspace(0, 10)yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');

最小二乘(Least Square)是什么?

上面用的是 minimize 方法,这个问题的目标函数是误差平方和,这就又有一个特定的解法,即最小二乘。

最小二乘的思想就是要使得观测点和估计点的距离的平方和达到最小,这里的“二乘”指的是用平方来度量观测点与估计点的远近(在古汉语中“平方”称为“二乘”),“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小。

关于最小二乘估计的计算,涉及更多的数学知识,这里不想详述,其一般的过程是用目标函数对各参数求偏导数,并令其等于 0,得到一个线性方程组。具体推导过程可参考斯坦福机器学习讲义 第 7 页。def deviations(theta, x, y): return (y - theta[0] - theta[1] * x)theta_best, ier = opt.leastsq(deviations, theta_guess, args=(xdata, ydata))print(theta_best)[-1.01442016 1.93854659]

最小二乘 leastsq 的结果跟 minimize 结果一样。注意 leastsq 的第一个参数不再是误差平方和 chi2,而是误差本身 deviations,即没有平方,也没有和。yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');

非线性最小二乘

上面是给一些点,拟合一条直线,拟合一条曲线也是一样的。def f(x, beta0, beta1, beta2): # 首先定义一个非线性函数,有 3 个参数 return beta0 + beta1 * np.exp(-beta2 * x**2)beta = (0.25, 0.75, 0.5) # 先猜 3 个 betaxdata = np.linspace(0, 5, 50)y = f(xdata, *beta)ydata = y + 0.05 * np.random.randn(len(xdata)) # 给 y 加噪音def g(beta): return ydata - f(xdata, *beta) # 真实 y 和 预测值的差,求最优曲线时要用到beta_start = (1, 1, 1)beta_opt, beta_cov = opt.leastsq(g, beta_start)print beta_opt # 求到的 3 个最优的 beta 值[ 0.25525709 0.74270226 0.54966466]

拿估计的 beta_opt 值跟真实的 beta = (0.25, 0.75, 0.5) 值比较,差不多。fig, ax = plt.subplots()ax.scatter(xdata, ydata) # 画点ax.plot(xdata, y, 'r', lw=2) # 真实值的线ax.plot(xdata, f(xdata, *beta_opt), 'b', lw=2) # 拟合的线ax.set_xlim(0, 5)ax.set_xlabel(r"$x$", fontsize=18)ax.set_ylabel(r"$f(x, \beta)$", fontsize=18)fig.tight_layout()

除了使用最小二乘,还可以使用曲线拟合的方法,得到的结果是一样的。beta_opt, beta_cov = opt.curve_fit(f, xdata, ydata)print beta_opt[ 0.25525709 0.74270226 0.54966466]

有约束的最小化

有约束的最小化是指,要求函数最小化之外,还要满足约束条件,举例说明。

边界约束def f(X): x, y = X return (x-1)**2 + (y-1)**2 # 这是一个碗状的函数x_opt = opt.minimize(f, (0, 0), method='BFGS').x # 无约束最优化

假设有约束条件,x 和 y 要在一定的范围内,如 x 在 2 到 3 之间,y 在 0 和 2 之间。bnd_x1, bnd_x2 = (2, 3), (0, 2) # 对自变量的约束x_cons_opt = opt.minimize(f, np.array([0, 0]), method='L-BFGS-B', bounds=[bnd_x1, bnd_x2]).x # bounds 矩形约束fig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X,Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 没有约束下的最小值,蓝色五角星ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 有约束下的最小值,红色星星bound_rect = plt.Rectangle((bnd_x1[0], bnd_x2[0]), bnd_x1[1] - bnd_x1[0], bnd_x2[1] - bnd_x2[0], facecolor="grey")ax.add_patch(bound_rect)ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()

不等式约束

介绍下相关理论,先来看下存在等式约束的极值问题求法,比如下面的优化问题。

目标函数是 f(w),下面是等式约束,通常解法是引入拉格朗日算子,这里使用 ββ 来表示算子,得到拉格朗日公式为

l 是等式约束的个数。

然后分别对 w 和ββ 求偏导,使得偏导数等于 0,然后解出 w 和βiβi,至于为什么引入拉格朗日算子可以求出极值,原因是 f(w) 的 dw 变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w) 的梯度与其他等式梯度的线性组合平行,因此他们之间存在线性关系。(参考《最优化与KKT条件》)

对于不等式约束的极值问题

常常利用拉格朗日对偶性将原始问题转换为对偶问题,通过解对偶问题而得到原始问题的解。该方法应用在许多统计学习方法中。有兴趣的可以参阅相关资料,这里不再赘述。def f(X): return (X[0] - 1)**2 + (X[1] - 1)**2def g(X): return X[1] - 1.75 - (X[0] - 0.75)**4x_opt = opt.minimize(f, (0, 0), method='BFGS').xconstraints = [dict(type='ineq', fun=g)] # 约束采用字典定义,约束方式为不等式约束,边界用 g 表示x_cons_opt = opt.minimize(f, (0, 0), method='SLSQP', constraints=constraints).xfig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X, Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 蓝色星星,没有约束下的最小值ax.plot(x_, 1.75 + (x_-0.75)**4, '', markersize=15)ax.fill_between(x_, 1.75 + (x_-0.75)**4, 3, color="grey")ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 在区域约束下的最小值ax.set_ylim(-1, 3)ax.set_xlabel(r"$x_0$", fontsize=18)ax.set_ylabel(r"$x_1$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()

scipy.optimize.minimize 中包括了多种最优化算法,每种算法使用范围不同,详细参考官方文档。


文章题目:最优化函数python 最优化函数 拉格朗日
网站链接:http://cqcxhl.cn/article/dooecsp.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP