重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
MySql为以下这些操作使用索引:
成都创新互联是一家专业提供颍泉企业网站建设,专注与成都网站设计、做网站、H5场景定制、小程序制作等业务。10年已为颍泉众多企业、政府机构等服务。创新互联专业网站建设公司优惠进行中。
1、为了快速查找匹配WHERE条件的行。
2、为了从考虑的条件中消除行。如果在多个索引之间选择一个,正常情况下,MySql使用找到行的最小数量的那个索引。
3、如果表有一个multiple-column索引,任何一个索引的最左前缀可以通过使用优化器来查找行。例如,如果你有一个 three-column索引在(col1, col2, col3),你能搜索索引在(col1), (col1, col2),和 (col1, col2, col3)。
MySQL索引类型包括:
(1)普通索引
这是最基本的索引,它没有任何限制。它有以下几种创建方式:
◆创建索引
CREATE INDEX indexName ON mytable(username(length)); 如果是CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型,必须指定 length,下同。
◆修改表结构
ALTER mytable ADD INDEX [indexName] ON (username(length))
◆创建表的时候直接指定
CREATE TABLE mytable( ID INT NOT NULL, username VARCHAR(16) NOT NULL, INDEX [indexName] (username(length)) ); 删除索引的语法:
DROP INDEX [indexName] ON mytable;
(2)唯一索引
与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:
◆创建索引
CREATE UNIQUE INDEX indexName ON mytable(username(length))
◆修改表结构
ALTER mytable ADD UNIQUE [indexName] ON (username(length))
建立索引,要使用离散度(选择度)更高的字段。
我们先来看一个重要的属性列的 离散度,
count(distinct(column_name)) : count(*) -- 列的全部不同值个数:所有数据行行数
数据行数相同的情况下,分子越大,列的离散度就越高。简单来说,如果列的重复值越多,离散度就越低,重复值越少,离散度就越高。
当字段值比较长的时候,建立索引会消耗很多的空间,搜索起来也会很慢。我们可以通过截取字段的前面一部分内容建立索引,这个就叫前缀索引。
创建一张商户表,因为地址字段比较长,在地址字段上建立前缀索引
create table shop(address varchar(120) not null);
alter table shop add key(address(12)); // 截取12个字符作为前缀索引是最优的吗?
问题是,截取多少呢?截取得多了,达不到节省索引存储空间的目的,截取得少了,重复内容太多,字段的散列度(选择性)会降低。怎么计算不同的长度的选择性呢?
先看一下字段在全部数据中的选择度计算公式:
select count(distinct address) / count(*) from shop;
select count(distinct left(address, n)) / count(*) as subn from shop;
count(distinct left(address,n)) / count(*) 的结果是会随着 n 的变大而变大。举个例子,现在有两个address(东大街长兴小区,东大街福乐小区),那么 distinct(address,2) distinct(address,3)
==所以,截取的长度越长就会越接近字段在全部数据中的选择度
==所以,我们要权衡索引大小和查询速度。
举个例子,通过不同长度去计算,与全表的选择性对比:
SELECT COUNT(DISTINCT(address))/COUNT(*) sub, -- 字段在全部数据中的选择度
COUNT(DISTINCT(LEFT(address,5)))/COUNT(*) sub5, -- 截取前5个字符的选择度
COUNT(DISTINCT(LEFT(address,7)))/COUNT(*) sub7,
COUNT(DISTINCT(LEFT(address,9)))/COUNT(*) sub9,
COUNT(DISTINCT(LEFT(address,10)))/COUNT(*) sub10, -- 截取前10个字符的选择度
COUNT(DISTINCT(LEFT(address,11)))/COUNT(*) sub11,
COUNT(DISTINCT(LEFT(address,12)))/COUNT(*) sub12,
COUNT(DISTINCT(LEFT(address,13)))/COUNT(*) sub13,
COUNT(DISTINCT(LEFT(address,15)))/COUNT(*) sub15
FROM shop;
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
| sub | sub5 | sub7 | sub9 | sub10 | sub11 | sub12 | sub13 | sub15 |
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
| 0.9993 | 0.0225 | 0.4663 | 0.8618 | 0.9734 | 0.9914 | 0.9943 | 0.9943 | 0.9958 |
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
可以看到在截取 11 个字段时 sub11(0.9993) 就已经很接近字段在全部数据中的选择度 sub(0.9958)了,而且长度也相较后面更短一些, 综合考虑比较合适。
ALTER TABLE shop ADD KEY (address(11));
1.索引的个数不要过多(浪费空间,更新变慢)
2.在用于 where 判断 order 排序和 join 的(on)字段上创建索引
3.区分度低的字段,例如性别,不要建索引(离散度太低,导致扫描行数过多)
4.更新频繁的值,不要作为主键或者索引(页分裂)
5.不建议用无序的值作为索引,例如身份证、UUID(在索引比较时需要转为ASCII,并且插入时可能造成页分裂)
6.若在多个字段都要创建索引的情况下,联合索引优于单值索引
7.联合索引把散列性高(区分度高)的值放在前面