重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这是画点的:
公司主营业务:成都网站设计、做网站、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联公司推出沁县免费做网站回馈大家。
Private Sub Form_Click()
Dim X(7) As Integer, Y(7) As Integer, i%
Form1.Scale (-15, 15)-(15, -15)
Form1.Line (0, 0)-(15, 0)
Form1.Line (0, 15)-(0, 0)
For i = 0 To 12 'Step 1.2 'X轴坐标
Form1.Line (i, 0.1)-(i, 0)
CurrentX = i
CurrentY = -1
Form1.Print i
Next i
For i = 0 To 12 'Step 1.2 'Y轴坐标
Form1.Line (0, i)-(0.3, i)
CurrentX = -0.5
CurrentY = i
Form1.Print i
Next i
X(0) = 0: X(1) = 2: X(2) = 4: X(3) = 6: X(4) = 8: X(5) = 10: X(6) = 12: X(7) = 14
Y(0) = 0: Y(1) = 1: Y(2) = 3: Y(3) = 4: Y(4) = 3: Y(5) = 2: Y(6) = 1: Y(7) = 0
For i = 0 To 7
Form1.PSet (X(i), Y(i)), vbRed
Next i
End Sub
Function hypot(ByVal X As Single, ByVal Y As Single)
hypot = Sqr(X ^ 2 + Y ^ 2)
End Function
Sub tspLine(ByVal n As Integer, ByVal ch As Integer, ByVal tx1 As Single, ByVal tx2 As Single, ByVal ty1 As Single, ByVal ty2 As Single)
Dim a(1000) As Single, b(1000) As Single, c(1000) As Single, dX(1000) As Single, dY(1000) As Single
Dim qx(1000) As Single, qy(1000) As Single
Dim tt As Single, bx3 As Single, bx4 As Single, by3 As Single, by4 As Single
Dim cx As Single, cy As Single, t(1000) As Single, px(1000) As Single, py(1000) As Single
Dim u(3000) As Single, v(3000) As Single, i As Integer
num = 0
For i = 1 To n
t(i) = hypot(X(i) - X(i - 1), Y(i) - Y(i - 1))
Next i
Select Case ch
Case 0 '抛物条件
u(0) = (X(1) - X(0)) / t(1): u(1) = (X(2) - X(1)) / t(2)
u(2) = (u(1) - u(0)) / (t(2) + t(1))
tx1 = u(0) - u(2) * t(1)
u(0) = (Y(1) - Y(0)) / t(1): u(1) = (Y(2) - Y(1)) / t(2)
u(2) = (u(1) - u(0)) / (t(2) + t(1))
ty1 = u(0) - u(2) * t(1)
u(0) = (X(n) - X(n - 1)) / t(n): u(1) = (X(n - 1) - X(n - 2)) / t(n - 1)
u(2) = (u(0) - u(1)) / (t(n) + t(n - 1))
tx2 = u(0) + u(2) * t(n)
u(0) = (Y(n) - Y(n - 1)) / t(n): u(1) = (Y(n - 1) - Y(n - 2)) / t(n - 1)
u(2) = (u(0) - u(1)) / (t(n) + t(n - 1))
ty2 = u(0) + u(2) * t(n)
Case 1 '夹持条件
a(0) = 1: c(0) = 0: dX(0) = tx1: dY(0) = ty1
a(n) = 1: b(n) = 0: dX(n) = tx2: dY(n) = ty2
Case 2 '自由条件
a(0) = 2: c(0) = 1
dX(0) = 3 * (X(1) - X(0)) / t(1): dY(0) = 3 * (Y(1) - Y(0)) / t(1)
a(n) = 2: b(n) = 1
dX(n) = 3 * (X(n) - X(n - 1)) / t(n): dY(n) = 3 * (Y(n) - Y(n - 1)) / t(n)
Case 3 '循环条件
a(0) = 2: c(0) = 1
dX(0) = 3 * (X(1) - X(0)) / t(1) - (t(1) * (X(2) - X(1)) / t(2) - X(1) + X(0)) / (t(1) + t(2))
dY(0) = 3 * (Y(1) - Y(0)) / t(1) - (t(1) * (Y(2) - Y(1)) / t(2) - Y(1) + Y(0)) / (t(1) + t(2))
a(n) = 2: b(n) = 1
dX(n) = 3 * (X(n) - X(n - 1)) / t(n)
dX(n) = dX(n) + (X(n) - X(n - 1) - t(n) * (X(n - 1) - X(n - 2)) / t(n - 1)) / (t(n) + t(n - 1))
dY(n) = 3 * (Y(n) - Y(n - 1)) / t(n)
dY(n) = dY(n) + (Y(n) - Y(n - 1) - t(n) * (Y(n - 1) - Y(n - 2)) / t(n - 1)) / (t(n) + t(n - 1))
End Select
'计算方程组系数阵和常数阵
For i = 1 To n - 1
a(i) = 2 * (t(i) + t(i + 1)): b(i) = t(i + 1): c(i) = t(i)
dX(i) = 3 * (t(i) * (X(i + 1) - X(i)) / t(i + 1) + t(i + 1) * (X(i) - X(i - 1)) / t(i))
dY(i) = 3 * (t(i) * (Y(i + 1) - Y(i)) / t(i + 1) + t(i + 1) * (Y(i) - Y(i - 1)) / t(i))
Next i
'采用追赶法解方程组
c(0) = c(0) / a(0)
For i = 1 To n - 1
a(i) = a(i) - b(i) * c(i - 1): c(i) = c(i) / a(i)
Next i
a(n) = a(n) - b(n) * c(i - 1)
qx(0) = dX(0) / a(0): qy(0) = dY(0) / a(0)
For i = 1 To n
qx(i) = (dX(i) - b(i) * qx(i - 1)) / a(i)
qy(i) = (dY(i) - b(i) * qy(i - 1)) / a(i)
Next i
px(n) = qx(n): py(n) = qy(n)
For i = n - 1 To 0 Step -1
px(i) = qx(i) - c(i) * px(i + 1)
py(i) = qy(i) - c(i) * py(i + 1)
Next i
'计算曲线上点的坐标
For i = 0 To n - 1
bx3 = (3 * (X(i + 1) - X(i)) / t(i + 1) - 2 * px(i) - px(i + 1)) / t(i + 1)
bx4 = ((2 * (X(i) - X(i + 1)) / t(i + 1) + px(i) + px(i + 1)) / t(i + 1)) / t(i + 1)
by3 = (3 * (Y(i + 1) - Y(i)) / t(i + 1) - 2 * py(i) - py(i + 1)) / t(i + 1)
by4 = ((2 * (Y(i) - Y(i + 1)) / t(i + 1) + py(i) + py(i + 1)) / t(i + 1)) / t(i + 1)
tt = 0
While (tt = t(i + 1))
cx = X(i) + (px(i) + (bx3 + bx4 * tt) * tt) * tt
cy = Y(i) + (py(i) + (by3 + by4 * tt) * tt) * tt
u1(num) = cx: v1(num) = cy: num = num + 1: tt = tt + 0.5
Wend
u1(num) = X(i + 1): v1(num) = Y(i + 1): num = num + 1
Next i
End Sub
Private Sub Command1_Click()
Dim i As Long
'Picture1.Scale (0, 0)-(640, 550)
DrawWidth = 3
Picture1.Cls
'If Check1.Value Then Command2_Click
'X(0) = 1
'Y(0) = 1
'X(t - 1) = 638
'Y(t - 1) = 548
Picture1.ForeColor = QBColor(10)
For i = 0 To t - 1
Picture1.Line (X(i) - 1, Y(i) - 1)-(X(i) + 1, Y(i) + 1), QBColor(10), B
Picture1.Print i
Next i
Picture1.ForeColor = QBColor(12)
DrawWidth = 1
tspLine t - 1, 2, 0, 0, 0, 0
Picture1.PSet (u1(0), v1(0))
For i = 1 To num - 1
Picture1.Line -(u1(i), v1(i))
'For de = 1 To 12000: Next de 'Sleep 1
Next i
Picture1.ForeColor = QBColor(10)
For i = 0 To t - 1
Picture1.Line (X(i) - 1, Y(i) - 1)-(X(i) + 1, Y(i) + 1), QBColor(10), B
Picture1.Print i
Next i
End Sub
这个要用GDI+画。要看你.net版本。
以下是VS2005中的一段代码。
Me.PictureBox1.Height = 450
Me.PictureBox1.Width = 880
Dim gr As Graphics '定义画布
Dim bp As New Bitmap(880, 450) '定义位图,并进行赋值
Dim p As New Pen(Color.Black) '定义画笔
p.Width = 2 '宽度2
p.DashStyle = Drawing2D.DashStyle.Solid '样式直线
PictureBox1.Image = bp
gr = Graphics.FromImage(PictureBox1.Image)
gr.FillRectangle(Brushes.White, New Rectangle(0, 0, PictureBox1.Width, PictureBox1.Height))
gr.DrawLine(p, a, b, a, .Height - b) '绘制纵坐标
gr.DrawLine(p, a, .Height - b, .Width - a, .Height - b) '绘制横坐标
。net 其实还是很好绘制图形的
你可以看下 Graphics 类
Dim d As New Bitmap(Me.Width, Me.Height) ‘一个图片吧
Dim g As Graphics = Graphics.FromImage(d)’绘制 准备在这个图片是进行
然后 就是你绘制的东西了
线 就是 g.DrawLine()
圆 弧度 就用 g.DrawArc(Pens.Black, New Rectangle(0, 0, 400, 200), 0, 360)
复杂的就是 g.DrawBezier()
等 如果你用的是 VS的 编译 上面都有详细的参数说明
Dim d As New Bitmap(Me.Width, Me.Height)
Dim g As Graphics = Graphics.FromImage(d)
g.DrawArc(Pens.Black, New Rectangle(0, 0, 200, 200), 0, 360)
g.DrawLine(Pens.Red, New Point(0, 0), New Point(200, 200))
g.DrawLines(Pens.Green, New Point() {New Point(0, 0), New Point(50, 40), New Point(50, 80), New Point(90, 70), New Point(100, 400)})
g.DrawBezier(Pens.Yellow, New Point(0, 100), New Point(0, 0), New Point(200, 0), New Point(200, 200))
g.Dispose()
Me.BackgroundImage = d