重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python里面lg函数 python lgb

python内置函数有哪些

python常见的内置函数有:

定制制作可以根据自己的需求进行定制,成都网站建设、成都做网站构思过程中功能建设理应排到主要部位公司成都网站建设、成都做网站的运用实际效果公司网站制作网站建立与制做的实际意义

1. abs()函数返回数字的绝对值。

2. all() 函数用于判断给定的参数中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False 外都算 True;空元组、空列表返回值为True。

3. any() 函数用于判断给定的参数是否全部为False,是则返回False,如果有一个为True,则返回True。 元素除了是 0、空、False外都算 TRUE。

4. bin()函数返回一个整数int或者长整数long int的二进制表示。

5. bool() 函数用于将给定参数转换为布尔类型,如果参数不为空或不为0,返回True;参数为0或没有参数,返回False。

6. bytearray()方法返回一个新字节数组。这个数组里的元素是可变的,并且每个元素的值范围: 0 = x 256(即0-255)。即bytearray()是可修改的二进制字节格式。

7. callable()函数用于检查一个对象是否可调用的。对于函数、方法、lambda函式、类以及实现了 __call__ 方法的类实例, 它都返回 True。(可以加括号的都可以调用)

8. chr()函数用一个范围在range(256)内(即0~255)的整数作参数,返回一个对应的ASCII数值。

9. dict()函数用来将元组/列表转换为字典格式。

10. dir()函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。

扩展资料:

如何查看python3.6的内置函数?

1、首先先打开python自带的集成开发环境IDLE;

2、然后我们直接输入"dir(__builtins__)",需要注意的是builtins左右的下划线都是两个;

3、回车之后我们就可以看到python所有的内置函数;

4、接下来我们学习第二种查看python内置函数的方法,我们直接在IDLE中输入"import builtins",然后输入"dir(builtins)";

5、然后回车,同样的这个方法也可以得到所有的python内置的函数;

6、这里我们可以使用python内置函数len()来查看python内置函数的个数,这里我们直接输入"len(dir(builtins))";

7、回车之后我们可以看到系统返回值153,说明我们现在这个版本中有153个内置函数;

8、最后我们介绍一个比较有用的内置函数"help",python内置函数有一百多个,我们当然不能记住所有的函数,这里python提供了一个"help"函数,我们来看一个例子一起来体会一下help函数的用法,这里我们直接输入"help(len)",然后回车,会看到系统给我们对于内置函数"len"的解释,当然对于其他函数可能会有更加详细的解释以及用法提示。

PYTHON实现对CSV文件多维不同单位数据的归一化处理

1)线性归一化

这种归一化比较适用在数值比较集中的情况,缺陷就是如果max和min不稳定,很容易使得归一化结果不稳定,使得后续的效果不稳定,实际使用中可以用经验常量来代替max和min。

2)标准差标准化

经过处理的数据符合标准正态分布,即均值为0,标准差为1。

3)非线性归一化

经常用在数据分化较大的场景,有些数值大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括log、指数、反正切等。需要根据数据分布的情况,决定非线性函数的曲线。

log函数:x = lg(x)/lg(max)

反正切函数:x = atan(x)*2/pi

Python实现

线性归一化

定义数组:x = numpy.array(x)

获取二维数组列方向的最大值:x.max(axis = 0)

获取二维数组列方向的最小值:x.min(axis = 0)

对二维数组进行线性归一化:

def max_min_normalization(data_value, data_col_max_values, data_col_min_values):

""" Data normalization using max value and min value

Args:

data_value: The data to be normalized

data_col_max_values: The maximum value of data's columns

data_col_min_values: The minimum value of data's columns

"""

data_shape = data_value.shape

data_rows = data_shape[0]

data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):

for j in xrange(0, data_cols, 1):

data_value[i][j] = \

(data_value[i][j] - data_col_min_values[j]) / \

(data_col_max_values[j] - data_col_min_values[j])

标准差归一化

定义数组:x = numpy.array(x)

获取二维数组列方向的均值:x.mean(axis = 0)

获取二维数组列方向的标准差:x.std(axis = 0)

对二维数组进行标准差归一化:

def standard_deviation_normalization(data_value, data_col_means,

data_col_standard_deviation):

""" Data normalization using standard deviation

Args:

data_value: The data to be normalized

data_col_means: The means of data's columns

data_col_standard_deviation: The variance of data's columns

"""

data_shape = data_value.shape

data_rows = data_shape[0]

data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):

for j in xrange(0, data_cols, 1):

data_value[i][j] = \

(data_value[i][j] - data_col_means[j]) / \

data_col_standard_deviation[j]

非线性归一化(以lg为例)

定义数组:x = numpy.array(x)

获取二维数组列方向的最大值:x.max(axis=0)

获取二维数组每个元素的lg值:numpy.log10(x)

获取二维数组列方向的最大值的lg值:numpy.log10(x.max(axis=0))

对二维数组使用lg进行非线性归一化:

def nonlinearity_normalization_lg(data_value_after_lg,

data_col_max_values_after_lg):

""" Data normalization using lg

Args:

data_value_after_lg: The data to be normalized

data_col_max_values_after_lg: The maximum value of data's columns

"""

data_shape = data_value_after_lg.shape

data_rows = data_shape[0]

data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):

for j in xrange(0, data_cols, 1):

data_value_after_lg[i][j] = \

data_value_after_lg[i][j] / data_col_max_values_after_lg[j]

Python的函数都有哪些

【常见的内置函数】

1、enumerate(iterable,start=0)

是python的内置函数,是枚举、列举的意思,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),enumerate将其组成一个索引序列,利用它可以同时获得索引和值。

2、zip(*iterables,strict=False)

用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用*号操作符,可以将元组解压为列表。

3、filter(function,iterable)

filter是将一个序列进行过滤,返回迭代器的对象,去除不满足条件的序列。

4、isinstance(object,classinfo)

是用来判断某一个变量或者是对象是不是属于某种类型的一个函数,如果参数object是classinfo的实例,或者object是classinfo类的子类的一个实例,

返回True。如果object不是一个给定类型的的对象, 则返回结果总是False

5、eval(expression[,globals[,locals]])

用来将字符串str当成有效的表达式来求值并返回计算结果,表达式解析参数expression并作为Python表达式进行求值(从技术上说是一个条件列表),采用globals和locals字典作为全局和局部命名空间。

【常用的句式】

1、format字符串格式化

format把字符串当成一个模板,通过传入的参数进行格式化,非常实用且强大。

2、连接字符串

常使用+连接两个字符串。

3、if...else条件语句

Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。其中if...else语句用来执行需要判断的情形。

4、for...in、while循环语句

循环语句就是遍历一个序列,循环去执行某个操作,Python中的循环语句有for和while。

5、import导入其他脚本的功能

有时需要使用另一个python文件中的脚本,这其实很简单,就像使用import关键字导入任何模块一样。

python中log_inner啥意思

python中log_inner是log表示以e为底数的对数函数符号。

在数学运算中,如果没有计算器,对于很大的数字相乘,我们花费大量的时间计算,而且一旦出错,就要重新计算,很是麻烦。其实对于数字相乘,不依靠靠计算器,想要准确简单的运算的方法不是没有,那就是对数和指数,他们解决了大数或非常的小的数相乘的繁琐计算。而在python中,也有计算对数的方法,那就是对数函数log函数。本文将向大家介绍log函数的表述语句、参数和返回值,并以实例演示用log函数计算对数的过程。log()函数:返回 x 的自然对数。即返回以 2 为基数的 x 的对数。

Python由荷兰数学和计算机科学研究学会的吉多·范罗苏姆 于1990 年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。Python解释器易于扩展,可以使用C语言或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。Python 也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。


网站名称:python里面lg函数 python lgb
转载源于:http://cqcxhl.cn/article/dossdpo.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP