重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

nosql数据库性能优化,浅谈nosql技术及应用论文

NoSQL数据库是否意味着缺乏安全性?

NoSQL薄弱的安全性会给企业带来负面影响 。Imperva公司创始人兼CTO Amichai Shulman如是说。在新的一年中,无疑会有更多企业开始或筹划部署NoSQL。方案落实后就会逐渐发现种种安全问题,因此早做准备才是正确的选择。 作为传统关系型数据库的替代方案,NoSQL在查询中并不使用SQL语言,而且允许用户随时变更数据属性。此类数据库以扩展性良好著称,并能够在需要大量应用程序与数据库本身进行实时交互的交易处理任务中发挥性能优势,Couchbase创始人兼产品部门高级副总裁James Phillips解释称:NoSQL以交易业务为核心。它更注重实时处理能力并且擅长直接对数据进行操作,大幅度促进了交互型软件系统的发展。Phillips指出。其中最大的优势之一是能够随时改变(在属性方面),由于结构性的弱化,修改过程非常便捷。 NoSQL最大优势影响其安全性 NoSQL的关键性特色之一是其动态的数据模型,Shulman解释道。我可以在其运作过程中加入新的属性记录。因此与这种结构相匹配的安全模型必须具备一定的前瞻性规划。也就是说,它必须能够了解数据库引入的新属性将引发哪些改变,以及新加入的属性拥有哪些权限。然而这个层面上的安全概念目前尚不存在,根本没有这样的解决方案。 根据Phillips的说法,某些NoSQL开发商已经开始着手研发安全机制,至少在尝试保护数据的完整性。在关系型数据库领域,如果我们的数据组成不正确,那么它将无法与结构并行运作,换言之数据插入操作整体将宣告失败。目前各种验证规则与完整性检查已经比较完善,而事实证明这些验证机制都能在NoSQL中发挥作用。我们与其他人所推出的解决方案类似,都会在插入一条新记录或是文档型规则时触发,并在执行过程中确保插入数据的正确性。 Shulman预计新用户很快将在配置方面捅出大娄子,这并非因为IT工作人员的玩忽职守,实际上主要原因是NoSQL作为一项新技术导致大多数人对其缺乏足够的知识基础。Application Security研发部门TeamSHATTER的经理Alex Rothacker对上述观点表示赞同。他指出,培训的一大问题在于,大多数NoSQL的从业者往往属于新生代IT人士,他们对于技术了解较多,但往往缺乏足够的安全管理经验。 如果他们从传统关系型数据库入手,那么由于强制性安全机制的完备,他们可以在使用中学习。但NoSQL,只有行家才能通过观察得出正确结论,并在大量研究工作后找到一套完备的安全解决方案。因此可能有90%的从业者由于知识储备、安全经验或是工作时间的局限而无法做到这一点。 NoSQL需在安全性方面进行优化 尽管Phillips认同新技术与旧经验之间存在差异,但企业在推广NoSQL时加大对安全性的关注会起到很大程度的积极作用。他认为此类数据存储机制与传统关系类数据库相比,其中包含着的敏感类信息更少,而且与企业网络内部其它应用程序的接触机会也小得多。 他们并不把这项新技术完全当成数据库使用,正如我们在收集整理大量来自其它应用程序的业务类数据时,往往也会考虑将其作为企业数据存储机制一样,他补充道。当然,如果我打算研发一套具备某种特定功能的社交网络、社交游戏或是某种特殊web应用程序,也很可能会将其部署于防火墙之下。这样一来它不仅与应用程序紧密结合,也不会被企业中的其它部门所触及。 但Rothacker同时表示,这种过度依赖周边安全机制的数据库系统也存在着极其危险的漏洞。一旦系统完全依附于周边安全模型,那么验证机制就必须相对薄弱,而且缺乏多用户管理及数据访问方面的安全保护。只要拥有高权限账户,我们几乎能访问存储机制中的一切数据。举例来说,Brian Sullivan就在去年的黑帽大会上演示了如何在完全不清楚数据具体内容的情况下,将其信息罗列出来甚至导出。 而根据nCircle公司CTO Tim ‘TK’ Keanini的观点,即使是与有限的应用程序相关联,NoSQL也很有可能被暴露在互联网上。在缺少严密网络划分的情况下,它可能成为攻击者窥探存储数据的薄弱环节。因为NoSQL在设计上主要用于互联网规模的部署,所以它很可能被直接连接到互联网中,进而面临大量攻击行为。 其中发生机率最高的攻击行为就是注入式攻击,这也是一直以来肆虐于关系类数据库领域的头号公敌。尽管NoSQL没有将SQL作为查询语言,也并不代表它能够免受注入式攻击的威胁。虽然不少人宣称SQL注入在NoSQL这边不起作用,但其中的原理是完全一致的。攻击者需要做的只是改变自己注入内容的语法形式,Rothacker解释称。也就是说虽然SQL注入不会出现,但JavaScript注入或者JSON注入同样能威胁安全。 此外,攻击者在筹划对这类数据库展开侵袭时,也很可能进一步优化自己的工具。不成熟的安全技术往往带来这样的窘境:需要花费大量时间学习如何保障其安全,但几乎每个IT人士都能迅速掌握攻击活动的组织方法。因此我认为攻击者将会始终走在安全部署的前面,Shulman说道。遗憾的是搞破坏总比防范工作更容易,而我们已经看到不少NoSQL技术方面的公开漏洞,尤其是目前引起热议的、以JSON注入为载体的攻击方式。 NoSQL安全性并非其阻碍 然而,这一切都不应该成为企业使用NoSQL的阻碍,他总结道。我认为归根结底,这应该算是企业的一种商业决策。只要这种选择能够带来吸引力巨大的商业机遇,就要承担一定风险,Shulman解释道。但应该采取一定措施以尽量弱化这种风险。 举例来说,鉴于数据库对外部安全机制的依赖性,Rothacker建议企业积极考虑引入加密方案。他警告称,企业必须对与NoSQL相对接的应用程序代码仔细检查。换言之,企业必须严格挑选负责此类项目部署的人选,确保将最好的人才用于这方面事务,Shulman表示。当大家以NoSQL为基础编写应用程序时,必须启用有经验的编程人员,因为客户端软件是抵挡安全问题的第一道屏障。切实为额外缓冲区的部署留出时间与预算,这能够让员工有闲暇反思自己的工作内容并尽量多顾及安全考量多想一点就是进步。综上所述,这可能与部署传统的关系类数据库也没什么不同。 具有讽刺意味的是,近年来数据库应用程序在安全性方面的提升基本都跟数据库本身没什么关系,nCircle公司安全研究及开发部门总监Oliver Lavery如是说。

创新互联网站建设公司是一家服务多年做网站建设策划设计制作的公司,为广大用户提供了网站制作、成都做网站,成都网站设计,1元广告,成都做网站选创新互联,贴合企业需求,高性价比,满足客户不同层次的需求一站式服务欢迎致电。

目前哪些NoSQL数据库应用广泛,各有什么特点

特点:

它们可以处理超大量的数据。

它们运行在便宜的PC服务器集群上。

PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。

它们击碎了性能瓶颈。

NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。

“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。

没有过多的操作。

虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。

Bootstrap支持

因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。

优点:

易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用

NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

主要应用:

Apache HBase

这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。

Apache Storm

用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。

Apache Spark

该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。

Apache Hadoop

该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。

Apache Drill

你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。

Apache Sqoop

也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。

Apache Giraph

这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。

Cloudera Impala

Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。

Gephi

它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。

MongoDB

这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。

十大顶尖公司:

Amazon Web Services

Forrester将AWS称为“云霸主”,谈到云计算领域的大数据,那就不得不提到亚马逊。该公司的Hadoop产品被称为EMR(Elastic Map Reduce),AWS解释这款产品采用了Hadoop技术来提供大数据管理服务,但它不是纯开源Hadoop,经过修改后现在被专门用在AWS云上。

Forrester称EMR有很好的市场前景。很多公司基于EMR为客户提供服务,有一些公司将EMR应用于数据查询、建模、集成和管理。而且AWS还在创新,Forrester称未来EMR可以基于工作量的需要自动缩放调整大小。亚马逊计划为其产品和服务提供更强大的EMR支持,包括它的RedShift数据仓库、新公布的Kenesis实时处理引擎以及计划中的NoSQL数据库和商业智能工具。不过AWS还没有自己的Hadoop发行版。

Cloudera

Cloudera有开源Hadoop的发行版,这个发行版采用了Apache Hadoop开源项目的很多技术,不过基于这些技术的发行版也有很大的进步。Cloudera为它的Hadoop发行版开发了很多功能,包括Cloudera管理器,用于管理和监控,以及名为Impala的SQL引擎等。Cloudera的Hadoop发行版基于开源Hadoop,但也不是纯开源的产品。当Cloudera的客户需要Hadoop不具备的某些功能时,Cloudera的工程师们就会实现这些功能,或者找一个拥有这项技术的合作伙伴。Forrester表示:“Cloudera的创新方法忠于核心Hadoop,但因为其可实现快速创新并积极满足客户需求,这一点使它不同于其他那些供应商。”目前,Cloudera的平台已经拥有200多个付费客户,一些客户在Cloudera的技术支持下已经可以跨1000多个节点实现对PB级数据的有效管理。

Hortonworks

和Cloudera一样,Hortonworks是一个纯粹的Hadoop技术公司。与Cloudera不同的是,Hortonworks坚信开源Hadoop比任何其他供应商的Hadoop发行版都要强大。Hortonworks的目标是建立Hadoop生态圈和Hadoop用户社区,推进开源项目的发展。Hortonworks平台和开源Hadoop联系紧密,公司管理人员表示这会给用户带来好处,因为它可以防止被供应商套牢(如果Hortonworks的客户想要离开这个平台,他们可以轻松转向其他开源平台)。这并不是说Hortonworks完全依赖开源Hadoop技术,而是因为该公司将其所有开发的成果回报给了开源社区,比如Ambari,这个工具就是由Hortonworks开发而成,用来填充集群管理项目漏洞。Hortonworks的方案已经得到了Teradata、Microsoft、Red Hat和SAP这些供应商的支持。

IBM

当企业考虑一些大的IT项目时,很多人首先会想到IBM。IBM是Hadoop项目的主要参与者之一,Forrester称IBM已有100多个Hadoop部署,它的很多客户都有PB级的数据。IBM在网格计算、全球数据中心和企业大数据项目实施等众多领域有着丰富的经验。“IBM计划继续整合SPSS分析、高性能计算、BI工具、数据管理和建模、应对高性能计算的工作负载管理等众多技术。”

Intel

和AWS类似,英特尔不断改进和优化Hadoop使其运行在自己的硬件上,具体来说,就是让Hadoop运行在其至强芯片上,帮助用户打破Hadoop系统的一些限制,使软件和硬件结合的更好,英特尔的Hadoop发行版在上述方面做得比较好。Forrester指出英特尔在最近才推出这个产品,所以公司在未来还有很多改进的可能,英特尔和微软都被认为是Hadoop市场上的潜力股。

MapR Technologies

MapR的Hadoop发行版目前为止也许是最好的了,不过很多人可能都没有听说过。Forrester对Hadoop用户的调查显示,MapR的评级最高,其发行版在架构和数据处理能力上都获得了最高分。MapR已将一套特殊功能融入其Hadoop发行版中。例如网络文件系统(NFS)、灾难恢复以及高可用性功能。Forrester说MapR在Hadoop市场上没有Cloudera和Hortonworks那样的知名度,MapR要成为一个真正的大企业,还需要加强伙伴关系和市场营销。

Microsoft

微软在开源软件问题上一直很低调,但在大数据形势下,它不得不考虑让Windows也兼容Hadoop,它还积极投入到开源项目中,以更广泛地推动Hadoop生态圈的发展。我们可以在微软的公共云Windows Azure HDInsight产品中看到其成果。微软的Hadoop服务基于Hortonworks的发行版,而且是为Azure量身定制的。

微软也有一些其他的项目,包括名为Polybase的项目,让Hadoop查询实现了SQLServer查询的一些功能。Forrester说:“微软在数据库、数据仓库、云、OLAP、BI、电子表格(包括PowerPivot)、协作和开发工具市场上有很大优势,而且微软拥有庞大的用户群,但要在Hadoop这个领域成为行业领导者还有很远的路要走。”

Pivotal Software

EMC和Vmware部分大数据业务分拆组合产生了Pivotal。Pivotal一直努力构建一个性能优越的Hadoop发行版,为此,Pivotal在开源Hadoop的基础上又添加了一些新的工具,包括一个名为HAWQ的SQL引擎以及一个专门解决大数据问题的Hadoop应用。Forrester称Pivotal Hadoop平台的优势在于它整合了Pivotal、EMC、Vmware的众多技术,Pivotal的真正优势实际上等于EMC和Vmware两大公司为其撑腰。到目前为止,Pivotal的用户还不到100个,而且大多是中小型客户。

Teradata

对于Teradata来说,Hadoop既是一种威胁也是一种机遇。数据管理,特别是关于SQL和关系数据库这一领域是Teradata的专长。所以像Hadoop这样的NoSQL平台崛起可能会威胁到Teradata。相反,Teradata接受了Hadoop,通过与Hortonworks合作,Teradata在Hadoop平台集成了SQL技术,这使Teradata的客户可以在Hadoop平台上方便地使用存储在Teradata数据仓库中的数据。

AMPLab

通过将数据转变为信息,我们才可以理解世界,而这也正是AMPLab所做的。AMPLab致力于机器学习、数据挖掘、数据库、信息检索、自然语言处理和语音识别等多个领域,努力改进对信息包括不透明数据集内信息的甄别技术。除了Spark,开源分布式SQL查询引擎Shark也源于AMPLab,Shark具有极高的查询效率,具有良好的兼容性和可扩展性。近几年的发展使计算机科学进入到全新的时代,而AMPLab为我们设想一个运用大数据、云计算、通信等各种资源和技术灵活解决难题的方案,以应对越来越复杂的各种难题。

MySQL数据库性能优化之分区分表分库

分表是分散数据库压力的好方法。

分表,最直白的意思,就是将一个表结构分为多个表,然后,可以再同一个库里,也可以放到不同的库。

当然,首先要知道什么情况下,才需要分表。个人觉得单表记录条数达到百万到千万级别时就要使用分表了。

分表的分类

**1、纵向分表**

将本来可以在同一个表的内容,人为划分为多个表。(所谓的本来,是指按照关系型数据库的第三范式要求,是应该在同一个表的。)

分表理由:根据数据的活跃度进行分离,(因为不同活跃的数据,处理方式是不同的)

案例:

对于一个博客系统,文章标题,作者,分类,创建时间等,是变化频率慢,查询次数多,而且最好有很好的实时性的数据,我们把它叫做冷数据。而博客的浏览量,回复数等,类似的统计信息,或者别的变化频率比较高的数据,我们把它叫做活跃数据。所以,在进行数据库结构设计的时候,就应该考虑分表,首先是纵向分表的处理。

这样纵向分表后:

首先存储引擎的使用不同,冷数据使用MyIsam 可以有更好的查询数据。活跃数据,可以使用Innodb ,可以有更好的更新速度。

其次,对冷数据进行更多的从库配置,因为更多的操作时查询,这样来加快查询速度。对热数据,可以相对有更多的主库的横向分表处理。

其实,对于一些特殊的活跃数据,也可以考虑使用memcache ,redis之类的缓存,等累计到一定量再去更新数据库。或者mongodb 一类的nosql 数据库,这里只是举例,就先不说这个。

**2、横向分表**

字面意思,就可以看出来,是把大的表结构,横向切割为同样结构的不同表,如,用户信息表,user_1,user_2等。表结构是完全一样,但是,根据某些特定的规则来划分的表,如根据用户ID来取模划分。

分表理由:根据数据量的规模来划分,保证单表的容量不会太大,从而来保证单表的查询等处理能力。

案例:同上面的例子,博客系统。当博客的量达到很大时候,就应该采取横向分割来降低每个单表的压力,来提升性能。例如博客的冷数据表,假如分为100个表,当同时有100万个用户在浏览时,如果是单表的话,会进行100万次请求,而现在分表后,就可能是每个表进行1万个数据的请求(因为,不可能绝对的平均,只是假设),这样压力就降低了很多很多。

延伸:为什么要分表和分区?

日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表。这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕。分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率。

什么是分表?

分表是将一个大表按照一定的规则分解成多张具有独立存储空间的实体表,我们可以称为子表,每个表都对应三个文件,MYD数据文件,.MYI索引文件,.frm表结构文件。这些子表可以分布在同一块磁盘上,也可以在不同的机器上。app读写的时候根据事先定义好的规则得到对应的子表名,然后去操作它。

什么是分区?

分区和分表相似,都是按照规则分解表。不同在于分表将大表分解为若干个独立的实体表,而分区是将数据分段划分在多个位置存放,可以是同一块磁盘也可以在不同的机器。分区后,表面上还是一张表,但数据散列到多个位置了。app读写的时候操作的还是大表名字,db自动去组织分区的数据。

**MySQL分表和分区有什么联系呢?**

1、都能提高mysql的性高,在高并发状态下都有一个良好的表现。

2、分表和分区不矛盾,可以相互配合的,对于那些大访问量,并且表数据比较多的表,我们可以采取分表和分区结合的方式(如果merge这种分表方式,不能和分区配合的话,可以用其他的分表试),访问量不大,但是表数据很多的表,我们可以采取分区的方式等。

3、分表技术是比较麻烦的,需要手动去创建子表,app服务端读写时候需要计算子表名。采用merge好一些,但也要创建子表和配置子表间的union关系。

4、表分区相对于分表,操作方便,不需要创建子表。

我们知道对于大型的互联网应用,数据库单表的数据量可能达到千万甚至上亿级别,同时面临这高并发的压力。Master-Slave结构只能对数据库的读能力进行扩展,写操作还是集中在Master中,Master并不能无限制的挂接Slave库,如果需要对数据库的吞吐能力进行进一步的扩展,可以考虑采用分库分表的策略。

**1、分表**

在分表之前,首先要选中合适的分表策略(以哪个字典为分表字段,需要将数据分为多少张表),使数据能够均衡的分布在多张表中,并且不影响正常的查询。在企业级应用中,往往使用org_id(组织主键)做为分表字段,在互联网应用中往往是userid。在确定分表策略后,当数据进行存储及查询时,需要确定到哪张表里去查找数据,

数据存放的数据表 = 分表字段的内容 % 分表数量

**2、分库**

分表能够解决单表数据量过大带来的查询效率下降的问题,但是不能给数据库的并发访问带来质的提升,面对高并发的写访问,当Master无法承担高并发的写入请求时,不管如何扩展Slave服务器,都没有意义了。我们通过对数据库进行拆分,来提高数据库的写入能力,即所谓的分库。分库采用对关键字取模的方式,对数据库进行路由。

数据存放的数据库=分库字段的内容%数据库的数量

**3、即分表又分库**

数据库分表可以解决单表海量数据的查询性能问题,分库可以解决单台数据库的并发访问压力问题。

当数据库同时面临海量数据存储和高并发访问的时候,需要同时采取分表和分库策略。一般分表分库策略如下:

中间变量 = 关键字%(数据库数量*单库数据表数量)

库 = 取整(中间变量/单库数据表数量)

表 = (中间变量%单库数据表数量)

实例:

1、分库分表

很明显,一个主表(也就是很重要的表,例如用户表)无限制的增长势必严重影响性能,分库与分表是一个很不错的解决途径,也就是性能优化途径,现在的案例是我们有一个1000多万条记录的用户表members,查询起来非常之慢,同事的做法是将其散列到100个表中,分别从members0到members99,然后根据mid分发记录到这些表中,牛逼的代码大概是这样子:

复制代码 代码如下:

?php

for($i=0;$i 100; $i++ ){

//echo "CREATE TABLE db2.members{$i} LIKE db1.members

";

echo "INSERT INTO members{$i} SELECT * FROM members WHERE mid%100={$i}

";

}

?

2、不停机修改mysql表结构

同样还是members表,前期设计的表结构不尽合理,随着数据库不断运行,其冗余数据也是增长巨大,同事使用了下面的方法来处理:

先创建一个临时表:

/*创建临时表*/

CREATE TABLE members_tmp LIKE members

然后修改members_tmp的表结构为新结构,接着使用上面那个for循环来导出数据,因为1000万的数据一次性导出是不对的,mid是主键,一个区间一个区间的导,基本是一次导出5万条吧,这里略去了

接着重命名将新表替换上去:

/*这是个颇为经典的语句哈*/

RENAME TABLE members TO members_bak,members_tmp TO members;

就是这样,基本可以做到无损失,无需停机更新表结构,但实际上RENAME期间表是被锁死的,所以选择在线少的时候操作是一个技巧。经过这个操作,使得原先8G多的表,一下子变成了2G多。


网站名称:nosql数据库性能优化,浅谈nosql技术及应用论文
URL地址:http://cqcxhl.cn/article/dsceisi.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP