重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

nosql弊端,谈谈NoSQL数据库诞生的原因和优缺点

互联网背景下,为什么用NoSql

本文将从单机MySQL的场景出发,简述一下随着网站的访问量越来越大,数据库部署的演进过程,到为什么要用MySQL的必要性。

创新互联建站一直通过网站建设和网站营销帮助企业获得更多客户资源。 以"深度挖掘,量身打造,注重实效"的一站式服务,以网站设计制作、网站建设、移动互联产品、成都全网营销推广服务为核心业务。十年网站制作的经验,使用新网站建设技术,全新开发出的标准网站,不但价格便宜而且实用、灵活,特别适合中小公司网站制作。网站管理系统简单易用,维护方便,您可以完全操作网站资料,是中小公司快速网站建设的选择。

大数据时代的数据有3V的特点:海量Volume、多样Variety、实时Velocity。

互联网网站需求的3高的特点:高并发、高可扩、高性能。

一、单机MySql

当一个网站的访问量不大时,用单个数据库完全可以轻松应付。

在那个时候,更多的都是静态网页,动态交互类型的网站不多。

上述架构下,我们来看看数据存储的瓶颈是什么?

1.数据量的总大小 一个机器放不下时

2.数据的索引(B+ Tree)一个机器的内存放不下时

3.访问量(读写混合)一个实例不能承受

如果满足了上述1 or 3个,进化......

二、Memcached(缓存)+Mysql+垂直拆分

后来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序员们开始大量的使用缓存技术来缓解数据库的压力,优化数据库的结构和索引。开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带了了比较高的IO压力。在这个时候,Memcached就自然的成为一个非常时尚的技术产品。

Memcached作为一个独立的分布式的缓存服务器,为多个web服务器提供了一个共享的高性能缓存服务,在Memcached服务器上,又发展了根据hash算法来进行多台Memcached缓存服务的扩展,然后又出现了一致性hash来解决增加或减少缓存服务器导致重新hash带来的大量缓存失效的弊端

三、MySql主从复制读写分离

由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。

四、分库分表+水平拆分+Mysql集群

在Memcached的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。

同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,是面试的热门问题也是业界讨论的热门技术问题。也就在这个时候,MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQL Cluster集群,但性能也不能很好满足互联网的要求,只是在高可靠性上提供了非常大的保证。

五、Mysql的扩展性瓶颈

MySQL数据库也经常存储一些大文本字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库。比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去,MySQL将变得非常的小。关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。

六、为什么用Nosql

今天我们可以通过第三方平台(如:Google,Facebook等)可以很容易的访问和抓取数据。用户的个人信息,社交网络,地理位置,用户生成的数据和用户操作日志已经成倍的增加。我们如果要对这些用户数据进行挖掘,那SQL数据库已经不适合这些应用了, NoSQL数据库的发展也却能很好的处理这些大的数据。下面给大家看一下,web应用数据量的增长图:

七、Nosql是什么

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,

泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。

(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。

八、Nosql的优势

1.易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。

数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

2.大数据量,高性能

NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。

这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

3.多样灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。

九、Nosql数据库的四大分类

键值(Key-Value)存储

列存储

文档存储

图形存储

常见的有:Redis、Memcache、MongoDB,这里就不一 一 介绍了。

请问mongodb为什么比mysql效率高,求详细,

首先是内存映射机制,数据不是持久化到存储设备中的,而是暂时存储在内存中,这就提高了在IO上效率以及操作系统对存储介质之间的性能损耗。(毕竟内存读取最快)

其次,NoSQL并不是不使用sql,只是不使用关系。没有关系的存在,就表示每个数据都好比是拥有一个单独的存储空间,然后一个聚集索引来指向。搜索性能一定会提高的。

第三,语言。使用javascript语法进行操作更加高效、直接。

这些是MongoDB针对关系型数据库的效率要高的原因。但是不能仅仅看重效率,这种数据库的设计带来的弊端也是有的。例如数据关系的维护会带来很多冗余数据、客户端代码需要大量针对数据库进行的IO操作、数据挖掘难以实现等等。

所以,应当针对应用系统来选择合适的数据存储介质才是优先需要考虑的。

mycat中间件在实际开发中经常用到吗?

前身是阿里的cobar,MyCat是一个开源的分布式数据库系统,是一个实现了MySQL协议的服务器,前端用户可以把它看作是一个数据库代理,用MySQL客户端工具和命令行访问,而其后端可以用MySQL原生协议与多个MySQL服务器通信,也可以用JDBC协议与大多数主流数据库服务器通信,其核心功能是分表分库,即将一个大表水平分割为N个小表,存储在后端MySQL服务器里或者其他数据库里。 目前虽然传统关系数据库存在一些列的先天弊端,但NoSQL数据库又将其替代,但是如果传统数据库易于扩展和分拆就可以极大的避免单机单库在数据增删改查方面的缺陷。MyCat就是为了解决数据库的分拆和扩展而生的开源分布式数据库系统。其最终的目标就是低成本地将现有的单机数据库和应用平滑迁移到“云”端,解决数据存储和业务规模迅速增长情况下的数据瓶颈问题。

使用tomcat-redis-session-manager 有没有弊端

redis 和mango都属于nosql,两者都可以作为缓存,同样的都可以作为数据库。 1.MongoDB的文档模型自由灵活,可以让你在开发过程中畅顺无比。对于大数据量、高并发、弱事务的互联网应用,MongoDB可以应对自如。MongoDB内置的水平扩展机制提供了从百万到十亿级别的数据量处理能力。 2.Redis为单进程单线程模式,采用队列模式将并发访问变为串行访问。Redis本身没有锁的概念,Redis对于多个客户端连接并不存在竞争,但是在Jedis客户端对Redis进行并发访问时会发生连接超时、数据转换错误、阻塞、客户端关闭连接等问题。

如何实现数据库,中间件统一部署

虽然云计算时代,传统数据库存在着先天性的弊端,但是NoSQL数据库又无法将其替代。如果传统数据易于扩展,可切分,就可以避免单机(单库)的性能缺陷。

MyCat的目标就是:低成本地将现有的单机数据库和应用平滑迁移到“云”端,解决数据存储和业务规模迅速增长情况下的数据瓶颈问题。2014年MyCat首次在上海的《中华架构师》大会上对外宣讲引发围观,更多的人参与进来,随后越来越多的项目采用了MyCat。

MyCat截至到2015年4月,保守估计已经有超过60个项目在使用,主要应用在电信领域、互联网项目,大部分是交易和管理系统,少量是信息系统。比较大的系统中,数据规模单表单月30亿。

MyCat是什么?

从定义和分类来看,它是一个开源的分布式数据库系统,是一个实现了MySQL协议的服务器,前端用户可以把它看作是一个数据库代理,用MySQL客户端工具和命令行访问,而其后端可以用MySQL原生协议与多个MySQL服务器通信,也可以用JDBC协议与大多数主流数据库服务器通信,其核心功能是分表分库,即将一个大表水平分割为N个小表,存储在后端MySQL服务器里或者其他数据库里。

MyCat发展到目前的版本,已经不是一个单纯的MySQL代理了,它的后端可以支持MySQL、SQL Server、Oracle、DB2、PostgreSQL等主流数据库,也支持MongoDB这种新型NoSQL方式的存储,未来还会支持更多类型的存储。而在最终用户看来,无论是那种存储方式,在MyCat里,都是一个传统的数据库表,支持标准的SQL语句进行数据的操作,这样一来,对前端业务系统来说,可以大幅降低开发难度,提升开发速度

如何用好NoSQL

No SQL DB是一种和关系型数据库相对应的对象数据库。按照数据模型保存性质将当前NoSQL分为四种:

1.Key-value stores键值存储, 保存keys+BLOBs

2.Table-oriented 面向表, 主要有Google的BigTable和Cassandra.

3.Document-oriented面向文本, 文本是一种类似XML文档,MongoDB 和 CouchDB

4.Graph-oriented 面向图论. 如Neo4J.

关系型数据库的弊端:

关系型数据库的历史已经有30余年了,因此,在某些情况下,关系型数据库的弱点就会暴露出来:

1. “对象-关系 阻抗不匹配”。关系模型和面向对象模型在概念上存在天然的不匹配的地方,比如对象模型当中特有的“继承”,“组合”,“聚合”,“依赖”的概念在关系模型当中是不存在的。

2. “模式演进”。即随着时间的推移,需要对数据库模式进行调整以便适应新的需求,然而,对数据库模式的调整是的成本很高的动作,因此很多设计师在系统设计之初会设计一个兼容性很强的数据库模式,以应对将来可能出现的需求,然而在现在的web系统开发过程中,系统的变更更加频繁,几乎无法预先设计出一种“万能”的数据库模式以满足所有的需求,因此 模式演进的弊端就愈发凸显。

3. 关系型数据库处理 稀疏表时的性能非常差。

4. network­oriented data 很适合处理 人工智能、社交网络中的一些需求。

所以,各种各样的No SQL DB 出现了,这里只简单介绍下Neo4J 的基本知识。

Neo 数据模型

Neo4J 是一个基于图实现的No SQL DB, 其基本的数据类型有如下几种:

Node, Relationship, Property.

Node 对应于图中的 节点,Relationship 对应图中的边,Node 和 Relationship 都可以拥有Property,

Property 的数据结构为。

数据遍历


分享题目:nosql弊端,谈谈NoSQL数据库诞生的原因和优缺点
地址分享:http://cqcxhl.cn/article/dscgssj.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP