重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

似然函数python代码的简单介绍

python数据分析与应用第三章代码3-5的数据哪来的

savetxt

成都创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都做网站、成都网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的扬州网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

import numpy as np

i2 = np.eye(2)

np.savetxt("eye.txt", i2)

3.4 读入CSV文件

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index从0开始

3.6.1 算术平均值

np.mean(c) = np.average(c)

3.6.2 加权平均值

t = np.arange(len(c))

np.average(c, weights=t)

3.8 极值

np.min(c)

np.max(c)

np.ptp(c) 最大值与最小值的差值

3.10 统计分析

np.median(c) 中位数

np.msort(c) 升序排序

np.var(c) 方差

3.12 分析股票收益率

np.diff(c) 可以返回一个由相邻数组元素的差

值构成的数组

returns = np.diff( arr ) / arr[ : -1] #diff返回的数组比收盘价数组少一个元素

np.std(c) 标准差

对数收益率

logreturns = np.diff( np.log(c) ) #应检查输入数组以确保其不含有零和负数

where 可以根据指定的条件返回所有满足条件的数

组元素的索引值。

posretindices = np.where(returns 0)

np.sqrt(1./252.) 平方根,浮点数

3.14 分析日期数据

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)

print "Dates =", dates

def datestr2num(s):

return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()

# 星期一 0

# 星期二 1

# 星期三 2

# 星期四 3

# 星期五 4

# 星期六 5

# 星期日 6

#output

Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.

1. 2. 3. 4.]

averages = np.zeros(5)

for i in range(5):

indices = np.where(dates == i)

prices = np.take(close, indices) #按数组的元素运算,产生一个数组作为输出。

a = [4, 3, 5, 7, 6, 8]

indices = [0, 1, 4]

np.take(a, indices)

array([4, 3, 6])

np.argmax(c) #返回的是数组中最大元素的索引值

np.argmin(c)

3.16 汇总数据

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

#得到第一个星期一和最后一个星期五

first_monday = np.ravel(np.where(dates == 0))[0]

last_friday = np.ravel(np.where(dates == 4))[-1]

#创建一个数组,用于存储三周内每一天的索引值

weeks_indices = np.arange(first_monday, last_friday + 1)

#按照每个子数组5个元素,用split函数切分数组

weeks_indices = np.split(weeks_indices, 5)

#output

[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]

weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)

def summarize(a, o, h, l, c): #open, high, low, close

monday_open = o[a[0]]

week_high = np.max( np.take(h, a) )

week_low = np.min( np.take(l, a) )

friday_close = c[a[-1]]

return("APPL", monday_open, week_high, week_low, friday_close)

np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的数组名、分隔符(在这个例子中为英文标点逗号)以及存储浮点数的格式。

0818b9ca8b590ca3270a3433284dd417.png

格式字符串以一个百分号开始。接下来是一个可选的标志字符:-表示结果左对齐,0表示左端补0,+表示输出符号(正号+或负号-)。第三部分为可选的输出宽度参数,表示输出的最小位数。第四部分是精度格式符,以”.”开头,后面跟一个表示精度的整数。最后是一个类型指定字符,在例子中指定为字符串类型。

numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)

def my_func(a):

... """Average first and last element of a 1-D array"""

... return (a[0] + a[-1]) * 0.5

b = np.array([[1,2,3], [4,5,6], [7,8,9]])

np.apply_along_axis(my_func, 0, b) #沿着X轴运动,取列切片

array([ 4., 5., 6.])

np.apply_along_axis(my_func, 1, b) #沿着y轴运动,取行切片

array([ 2., 5., 8.])

b = np.array([[8,1,7], [4,3,9], [5,2,6]])

np.apply_along_axis(sorted, 1, b)

array([[1, 7, 8],

[3, 4, 9],

[2, 5, 6]])

3.20 计算简单移动平均线

(1) 使用ones函数创建一个长度为N的元素均初始化为1的数组,然后对整个数组除以N,即可得到权重。如下所示:

N = int(sys.argv[1])

weights = np.ones(N) / N

print "Weights", weights

在N = 5时,输出结果如下:

Weights [ 0.2 0.2 0.2 0.2 0.2] #权重相等

(2) 使用这些权重值,调用convolve函数:

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

sma = np.convolve(weights, c)[N-1:-N+1] #卷积是分析数学中一种重要的运算,定义为一个函数与经过翻转和平移的另一个函数的乘积的积分。

t = np.arange(N - 1, len(c)) #作图

plot(t, c[N-1:], lw=1.0)

plot(t, sma, lw=2.0)

show()

3.22 计算指数移动平均线

指数移动平均线(exponential moving average)。指数移动平均线使用的权重是指数衰减的。对历史上的数据点赋予的权重以指数速度减小,但永远不会到达0。

x = np.arange(5)

print "Exp", np.exp(x)

#output

Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]

Linspace 返回一个元素值在指定的范围内均匀分布的数组。

print "Linspace", np.linspace(-1, 0, 5) #起始值、终止值、可选的元素个数

#output

Linspace [-1. -0.75 -0.5 -0.25 0. ]

(1)权重计算

N = int(sys.argv[1])

weights = np.exp(np.linspace(-1. , 0. , N))

(2)权重归一化处理

weights /= weights.sum()

print "Weights", weights

#output

Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]

(3)计算及作图

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

ema = np.convolve(weights, c)[N-1:-N+1]

t = np.arange(N - 1, len(c))

plot(t, c[N-1:], lw=1.0)

plot(t, ema, lw=2.0)

show()

3.26 用线性模型预测价格

(x, residuals, rank, s) = np.linalg.lstsq(A, b) #系数向量x、一个残差数组、A的秩以及A的奇异值

print x, residuals, rank, s

#计算下一个预测值

print np.dot(b, x)

3.28 绘制趋势线

x = np.arange(6)

x = x.reshape((2, 3))

x

array([[0, 1, 2], [3, 4, 5]])

np.ones_like(x) #用1填充数组

array([[1, 1, 1], [1, 1, 1]])

类似函数

zeros_like

empty_like

zeros

ones

empty

3.30 数组的修剪和压缩

a = np.arange(5)

print "a =", a

print "Clipped", a.clip(1, 2) #将所有比给定最大值还大的元素全部设为给定的最大值,而所有比给定最小值还小的元素全部设为给定的最小值

#output

a = [0 1 2 3 4]

Clipped [1 1 2 2 2]

a = np.arange(4)

print a

print "Compressed", a.compress(a 2) #返回一个根据给定条件筛选后的数组

#output

[0 1 2 3]

Compressed [3]

b = np.arange(1, 9)

print "b =", b

print "Factorial", b.prod() #输出数组元素阶乘结果

#output

b = [1 2 3 4 5 6 7 8]

Factorial 40320

print "Factorials", b.cumprod()

#output

怎么看python中逻辑回归输出的解释

以下为python代码,由于训练数据比较少,这边使用了批处理梯度下降法,没有使用增量梯度下降法。

##author:lijiayan##data:2016/10/27

##name:logReg.pyfrom numpy import *import matplotlib.pyplot as pltdef loadData(filename):

data = loadtxt(filename)

m,n = data.shape    print 'the number of  examples:',m    print 'the number of features:',n-1    x = data[:,0:n-1]

y = data[:,n-1:n]    return x,y#the sigmoid functiondef sigmoid(z):    return 1.0 / (1 + exp(-z))#the cost functiondef costfunction(y,h):

y = array(y)

h = array(h)

J = sum(y*log(h))+sum((1-y)*log(1-h))    return J# the batch gradient descent algrithmdef gradescent(x,y):

m,n = shape(x)     #m: number of training example; n: number of features    x = c_[ones(m),x]     #add x0    x = mat(x)      # to matrix    y = mat(y)

a = 0.0000025       # learning rate    maxcycle = 4000    theta = zeros((n+1,1))  #initial theta    J = []    for i in range(maxcycle):

h = sigmoid(x*theta)

theta = theta + a * (x.T)*(y-h)

cost = costfunction(y,h)

J.append(cost)

plt.plot(J)

plt.show()    return theta,cost#the stochastic gradient descent (m should be large,if you want the result is good)def stocGraddescent(x,y):

m,n = shape(x)     #m: number of training example; n: number of features    x = c_[ones(m),x]     #add x0    x = mat(x)      # to matrix    y = mat(y)

a = 0.01       # learning rate    theta = ones((n+1,1))    #initial theta    J = []    for i in range(m):

h = sigmoid(x[i]*theta)

theta = theta + a * x[i].transpose()*(y[i]-h)

cost = costfunction(y,h)

J.append(cost)

plt.plot(J)

plt.show()    return theta,cost#plot the decision boundarydef plotbestfit(x,y,theta):

plt.plot(x[:,0:1][where(y==1)],x[:,1:2][where(y==1)],'ro')

plt.plot(x[:,0:1][where(y!=1)],x[:,1:2][where(y!=1)],'bx')

x1= arange(-4,4,0.1)

x2 =(-float(theta[0])-float(theta[1])*x1) /float(theta[2])

plt.plot(x1,x2)

plt.xlabel('x1')

plt.ylabel(('x2'))

plt.show()def classifyVector(inX,theta):

prob = sigmoid((inX*theta).sum(1))    return where(prob = 0.5, 1, 0)def accuracy(x, y, theta):

m = shape(y)[0]

x = c_[ones(m),x]

y_p = classifyVector(x,theta)

accuracy = sum(y_p==y)/float(m)    return accuracy

调用上面代码:

from logReg import *

x,y = loadData("horseColicTraining.txt")

theta,cost = gradescent(x,y)print 'J:',cost

ac_train = accuracy(x, y, theta)print 'accuracy of the training examples:', ac_train

x_test,y_test = loadData('horseColicTest.txt')

ac_test = accuracy(x_test, y_test, theta)print 'accuracy of the test examples:', ac_test

学习速率=0.0000025,迭代次数=4000时的结果:

似然函数走势(J = sum(y*log(h))+sum((1-y)*log(1-h))),似然函数是求最大值,一般是要稳定了才算最好。

下图为计算结果,可以看到训练集的准确率为73%,测试集的准确率为78%。

这个时候,我去看了一下数据集,发现没个特征的数量级不一致,于是我想到要进行归一化处理:

归一化处理句修改列loadData(filename)函数:

def loadData(filename):

data = loadtxt(filename)

m,n = data.shape    print 'the number of  examples:',m    print 'the number of features:',n-1    x = data[:,0:n-1]

max = x.max(0)

min = x.min(0)

x = (x - min)/((max-min)*1.0)     #scaling    y = data[:,n-1:n]    return x,y

在没有归一化的时候,我的学习速率取了0.0000025(加大就会震荡,因为有些特征的值很大,学习速率取的稍大,波动就很大),由于学习速率小,迭代了4000次也没有完全稳定。现在当把特征归一化后(所有特征的值都在0~1之间),这样学习速率可以加大,迭代次数就可以大大减少,以下是学习速率=0.005,迭代次数=500的结果:

此时的训练集的准确率为72%,测试集的准确率为73%

从上面这个例子,我们可以看到对特征进行归一化操作的重要性。

离散型似然函数怎么写出来举例

直接套公式再相乘就可以了。

对于离散型随机变量,设一条样本函数是w1,...wn,,其似然函数是P{W1=w1,...,Wn=wn}.....和连续型的时候是类似的

样本值是0,1,2,0,2,1,对应的概率分别是theta,(1-2theta),theta,theta,theta,(1-2theta)。

似然函数就是得到这个样本的概率,由于每次抽样独立,所以把这几个概率乘起来就是得到这个样本的概率了,也就是似然函数。

给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)。


网页题目:似然函数python代码的简单介绍
文章转载:http://cqcxhl.cn/article/dsedgjj.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP