重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

关于javascript交互可视化的信息

JavaScript有哪些Network Graph可视化的库?

不用WebGL是不可能承载十万级的。我用three.js,自己画十万级别可交互的力导向图,没什么压力。当然因为是自己画所以样式和交互都会比较土

创新互联公司专注于牡丹网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供牡丹营销型网站建设,牡丹网站制作、牡丹网页设计、牡丹网站官网定制、微信小程序服务,打造牡丹网络公司原创品牌,更为您提供牡丹网站排名全网营销落地服务。

鳖。百万级别的话,画出来已经比较勉强,交互基本不可能。非要SVG嘛,啧啧。Canvas2D嘛,呵呵。而且另一个问题就是,百万级的网络图,你让用户

下载数据要多久?

当然直接用three.js还是不推荐的,它只是证明了一个数量级上的可行性而已。

另外,我必须吐槽一

下,所谓百万级的数据可视化,噱头成分更多,因为这些数据画出来基本上都有问题。要么就是毛线团,要么就是聚得特别近,于是你看到1条边其实它是若干条的

叠起来的结果,然而这并没有什么卵用。个人认为与其追求所谓百万级数据可视化不如好好做做预处理把百万级聚到万级,还能有更多性能空间来做交互。

惊艳:近百种数据可视化工具效果展示,总有一款适合你!

导读 :俗话说“巧妇难为无米之炊”。数据时代,没有一款好的数据可视化分析工具,光有团队怎么行?商场如战场,数据是把枪。亚马逊运用大数据为客户推荐商品信息,阿里用大数据成立了小微金融服务集团,而谷歌更是计划用大数据接管世界……不知不觉,数据已经成为我们生活中必不可少的利器。本文收集了各个平台各种行业的数据可视化分析工具,让你不仅大饱眼福,而且还可以让你事半功倍。

一款免费的新型大数据可视化分析工具,操作简单,支持多种数据源,上卷下钻,数据预测,聚类分析,相关性分析,数据联想,决策树,地图,组合图等功能。

Charting Fonts是将符号字体与字体整合(把符号变成字体),创建出漂亮的矢量化图标。

Gephi是进行 社会 图谱数据可视化分析的工具,不但能处理大规模数据集并且Gephi是一个可视化的网络 探索 平台,用于构建动态的、分层的数据图表。

CartoDB是一个不可错过的网站,你可以用CartoDB很轻易就把表格数据和地图关联起来,这方面CartoDB是最优秀的选择。

Google Chart提供了一种非常完美的方式来可视化数据,提供了大量现成的图标类型,从简单的线图表到复杂的分层树地图等。它还内置了动画和用户交互控制。

D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。

Crossfilter既是图表,又是互动图形用户界面的小程序,当你调整一个图表中的输入范围时,其他关联图表的数据也会随之改变

Raphael是创建图表和图形的JavaScript库,与其他库最大的不同是输出格式仅限SVG和VML.

R语言是主要用于统计分析、绘图的语言和操作环境。虽然R主要用于统计分析或者开发统

计相关的软件,但也有用作矩阵计算。其分析速度可比美GNUOctave甚至商业软件MATLAB。

如果你需要制作信息图而不仅仅是数据可视化,Visual.ly是最流行的一个选择。

Weka是一个能根据属性分类和集群大量数据的优秀工具,Weka不但是数据分析的强大工具,还能生成一些简单的图表。

NodeBox是OS X上创建二维图形和可视化的应用程序,你需要了解Python程序,NodeBox与Processing类似,但没有Processing的互动功能。

Processing是数据可视化的招牌工具。你只需要编写一些简单的代码,然后编译成Java。Processing可以在几乎所有平台上运行。

Leaflet是一个开源的JavaScript库,用来开发移动友好地交互地图。

Openlayers可能是所有地图库中可靠性最高的一个。虽然文档注释并不完善。且学习曲线非常陡峭,但是对于特定的任务来说,Openlayers能够提供一些其他地图库都没有的特殊工具。

PolyMaps是一个地图库,主要面向数据可视化用户。PolyMaps在地图风格化方面有独到之处,类似CSS样式表的选择器。

Timeline即时间轴,用户通过这个工具可以一目了然的知道自己在何时做了什么。

jsDraw2DX是一个标准的JavaScript库,用来创建任意类型的SVG交互式图形,可生成包括线、矩形、多边形、椭圆、弧线等图形。

iCharts提供可一个用于创建并呈现引人注目图表的托管解决方案。有许多不同种类的图表可供选择,每种类型都完全可定制,以适合网站的主题。iCharts有交互元素,可以从Google Doc、Excel表单和其他来源中获取数据。

Modest Maps是一个轻量级、可扩展的、可定制的和免费的地图显示类库,这个类库能帮助开发人员在他们自己的项目里能够与地图进行交互。

Many Eyes是一个Web应用程序,用来创建、分享和讨论用户上传图形数据。

Anychart是一个灵活的基于Flash/JavaScript(HTML5)的图表解决方案、跨浏览器、跨平台。除了图表功能外,它还有一款收费的交互式图表和仪表。

Kartograph不需要任何地图提供者像Google Maps,用来建立互动式地图,由两个libraries组成,从空间数据开放格式,利用向量投影的Python library以及post GIS,并将两者结合到SVG和JavaScript library,并把这些SVG资料转变成互动性地图。

Sigma.js是一个开源的轻量级库,用来显示交互式的静态和动态图表。

经常使用开源软件的朋友应该很熟悉ECharts,大家都知道去年春节以及近期央视大规划报道的百度大数据产品,如百度迁徙、百度司南、百度大数据预测等等,这些产品的数据可视化均是通过ECharts来实现的。

Zoho Reports支持丰富的功能帮助不同的用户解决各种个性化需求,支持SQL查询、类四暗自表格界面等。

Quantum GIS(QDIS)是一个用户界面友好、开源代码的GIS客户端程序,支持数据的可视化、管理、编辑与分析和印刷地图的制作。

Tableau Public是一款桌面可视化工具,用户可以创建自己的数据可视化,并将交互性数据可视化发布到网页上。

Paper.js是一个开源向量图表叙述架构,能够在HTML5 Canvas 运作,对于初学者来说它是很容易学习的,其中也有很多专业面向可以提供中阶及高阶使用者。

Dundas Chart处于行业领先地位的NET图表处理控件,于2009年被微软收购,并将图表产品的一部分功能集成到Visual Studio中。

TimeFlow Analytical Timeline是为了暂时性资料的视觉化工具,现在有alpha版本因此有机会可以发现差错,提供以下不同的呈现方式:时间轴、日历、柱状图、表格等。

Gantti是一个开源的PHP类,帮助用户即时生成Gantti图表。使用Gantti创建图表无需使用JavaScript,纯HTML-CSS3实现。图表默认输出非常漂亮,但用户可以自定义样式进行输出(SASS样式表)。

Smoothie Charts是一个十分小的动态流数据图表路。通过推送一个webSocket来显示实时数据流。Smoothie Charts只支持Chorme和Safari浏览器,并且不支持刻印文字或饼图,它很擅长显示流媒体数据。

Flot是一个优秀的线框图表库,支持所有支持canvas的浏览器(目前主流的浏览器如火狐、IE、Chrome等都支持)。

Pizza Pie Charts是个响应式饼图图表,基于Adobe Snap SVG框架,通过HTML标记和CSS来替代JavaScript对象,更容易集成各种先进的技术。

Fusion Charts Suit XT是一款跨平台、跨浏览器的JavaScript图表组件,为你提供令人愉悦的JavaScript图表体验。它是最全面的图表解决方案,包含90+图表类型和众多交互功能,包括3D、各种仪表、工具提示、向下钻取、缩放和滚动等。它拥有完整的文档以及现成的演示,可以帮助你快速创建图表。

Protovis是一个可视化JavaScript图表生成工具。

Arbor.Js提供有效率、以力导向的版面配置演算法,抽象画图表组织以及筛选更新的处理。

Highchart.js是单纯由JavaScript所写的图表资料库,提供简单的方法来增加互动性图表来表达你的网站或网站应用程式。目前它能支援线图、样条函数图。

Circos最初主要用于基因组序列相关数据的可视化,目前已应用于多个领域,例如:影视作品中的人物关系分析,物流公司的订单来源和流向分析等,大多数关系型数据都可以尝试用Circos来可视化。

NodeXLDE 主要功能是社交网络可视化。

BirdEye是Decearative Visual Analytics,它属于一个群体专案,为了要提升设计和广泛的开源资料视觉化发展,并且为了Adobe Flex建视觉分析图库,这个动作以叙述性的资料库为主,让使用者能够建立多元资料视觉化界面来分析以及呈现资讯。

Visualize Free是一个建立在高阶商业后台集游InetScoft开发的视觉化软体免费的视觉分析工具,可从多元变量资料筛选并看其趋势,或是利用简单地点及方法来切割资料或是小范围的资料。

OpenStreetMap是一个世界地图,由像您一样的人们所构筑,可依据开放协议自由使用。

OpenHeatMap简单易用,用户可以用它上传数据、创建地图、交流信息。它可以把数据(如Google Spreadsheet的表单)转化为交互式的地图应用,并在网上分享。

GeoCommons可以使用户构建富交互可视化应用来解决问题,即使他们没有任何传统地图使用经验。你可以将实 社会 化数据或者GeoCommons保存的超5万份开源数据在地图上可视化,创造带交互的可视化分析作品,并将作品嵌入网站、博客或分享到社交网络上。

来源: 悟空智能 科技

用javascript从其他网页获取数据,并可视化地显示出来

你是想自己写个单机网页去关联人家放在服务器的网页并可以操纵人家的数据?、

初识 D3.js :打造专属可视化

随着现在自定义可视化的需求日益增长,Highcharts、echarts等高度封装的可视化框架已经无法满足用户各种强定制性的可视化需求了,这个时候D3的无限定制的能力就脱颖而出。

如果想要通过D3完成可视化,除了对于D3本身API的学习, 关于web标准的HTML, SVG, CSS, Javascript 和 数据可视化的概念以及标准都是需要学习的。这无疑带来了较高的学习门槛,但这也是值得的,因为掌握 D3 后,我们几乎可以实现任何 2d 的可视化需求。

本文通过对D3核心模块分析以及进行具体案例实践的方式,来帮助初学者学习了解D3的绘图思路。

D3的全称是 Data-Driven Documents(数据驱动文档),是基于数据来操作文档的 JavaScript 库,其核心在于使用绘图指令对数据进行转换,在源数据的基础上创建新的可绘制数据, 生成SVG路径以及通过数据和方法在DOM中创建数据可视化元素(如轴)。

相对于Echats等开箱即用的可视化框架来说,D3更接近底层,它可以直接控制原生的SVG元素,并且不直接提供任何一种现成的可视化图表,所有的图表都需我们在它的库里挑选合适的方法构建而成,这也大大提高了它的可视化定制能力。而且D3 没有引入新的图形元素,它遵循了web标准(HTML, CSS, SVG 以及 Canvas )来展示数据 ,所以它可以不需要依赖其他框架独立运行在现代浏览器中。

在V4版本后,D3的 API 现在已经被拆分成一个个模块,我们可以根据自己的可视化需求进行按需加载。根据泛义可以将D3 API模块分为以下的几大类: DOM操作、数据处理,数据分析转换、地理路径,行为等 。

这里我们主要对 D3-selection 和 D3-scale 模块进行解析:

D3-selection (选择集) 是 D3js的核心模块,主要是用来进行选择元素,设置属性、数据绑定,事件绑定等操作。

选择元素: D3-selection 提供了两种方法来获取目标元素,d3.select():返回目标元素的第一个节点,d3.selectAll():返回目标元素的集合,乍一看有点类似原生API 的 querySelector 和 querySelectorAll,但是 d3.select 返回的是一个 selection 对象,querySelector 返回的是一个 NodeList 数组。通过控制台打印的信息,可以看到 selection 下的 groups 存放了所有选择的元素集合,parents 存放了所有选中元素的父节点。

设置属性或者绑定事件: 我们不需要关心 groups 的结构是怎么样的。当调用 selection.attr 或者 selection.style 的时候, selection 中的所有 group 的所有子元素都会被调用,group 存在的唯一影响是: 当我们传参是一个function 的时候,例如 selection.attr('attrName', function(data, i)) 或 selection.on('click', function(data, i)) 时, 传递的 function(data, i) 中, 第二个参数 i 是元素在 group 中的索引而不是在整个 selection 中的索引。

数据绑定: 实际上是给选择的DOM元素的 __data__ 属性赋值,这里提供了3种方式进行数据绑定:

(1)给每一个单独的 DOM 元素调用 selection.datum:d3.select('body').datum(20) 等价于 document.body.__data__ = 20

(2)从父节点中继承来数据, 比如: append , insert , select,子节点会主动继承父节点的数据:

(3) 调用 selection.data() 方法,支持传入装有基础数据类型的数据,也支持传入一个function(parentNode, groupIndex)根据节点索引与数据做映射,data()方法引入了 d3 中非常重要的 join 思想:

绑定 data 到 DOM 元素, 在D3中是通过比较 data 和 DOM 的 key 值来找到对应关系的。 如果我们没有单独设置 key 值,那么默认根据 data 的下标索引来设定,但是当数据顺序发生改变,这个默认下标 key 值 就变得不可靠了,这时我们可以使用 selection.data(data, keyFunction) 中的第二个参数 keyFunction,根据当前的数据返回一个对应的 key 值。通过下面的图例可以看出,不管是有一个还是多个 group(每个group 都是独立的),只要我们保证在任意一个 group 中的 key 值是唯一的,数据一旦发生变化都会反映给对应的 DOM 元素( update 的过程):

上面提到的都是data数据和DOM元素数量相同的情况下的数据绑定,那如果data数据和DOM元素数量不相同时,我们来看看 D3 又是如何进行数据绑定的:现在终于可以来介绍 D3-selecion 模块的核心 Join 思想了,这个思想简单来说就是 “不应该告诉D3去怎么创建元素, 而是告诉D3,.selectAll() 得到的 selecion 集合应该和 .data(data) 绑定的数据要怎么一一对应”。

从上图可以看出,在进行 d3.data(data) 数据绑定的时候,会产生三种状态的选择集:

用 Join 的方式来理解意味着,我们要做的事情仅仅是声明 DOM集合和数据集合之间的关系, 并且通过处理三个不同状态的集合 enter、update 、 exit 来描述这种关系。这种方式可以大大简化我们对DOM元素的操作,我们不需要再用 if 和 for 循环的方式来进行复杂的逻辑判断,来得到我们需要得到的元素集合。并且在处理动态数据的时候,可以通过处理这三种状态,轻松的展示实时数据和添加平滑的动态交互效果。

D3-scale (比列尺) 提供多种不同类型的比例尺。经常和 D3-axis 坐标轴模块一起使用。

D3-scale 提供了多种连续性和非连续性的比例尺,总体可以将他们分为三大类:

常用的一些比例尺:

(1)d3-scaleLinear 线性比例尺(连续性输入和连续性输出)

可以看出,调用d3.scaleLinear()可以生成线性比例尺,domain()是输入域,range()是输出域,相当于将domain中的数据集映射到range的数据集中。

使用示例:

映射关系:

(2)d3-scaleTime 时间比例尺(连续性输入和连续性输出)

时间比例尺与线性比例尺类似,只不过输入域变成了一个时间轴。正常我们使用比例尺都是个正序的过程,但是D3也提供了invert()以及invertExtent()方法,我们可以通过输出域中的具体值得出对应输入域的值。

使用示例:

(3)d3.scaleQuantize 量化比例尺(连续性输入和离散性输出)

量化比例尺是将连续的输入域根据输出域被分割为均匀的片段,所以它的输出域是离散的。

使用示例:

映射关系:

(4)d3. scaleThreshold 阈值比例尺(连续性输入和离散性输出)

阈值比例尺可以为一组连续数据指定分割阈值,阈值比例尺默认的 domain:[0.5] 以及默认的 range:[0, 1] ,因此默认的 d3.scaleThreshold() 等价于 Math.round 函数。 阈值比例尺输入域为 N 的话,输出域必须为 N + 1,否则比例尺对某些值可能会返回 undefined,或者输出域多余的值会被忽略。

使用示例:

存在三种映射关系:

a. 当domain和range的数据是 N : N+1

b. 当domain和range的数据是 N : N + 大于1

c. 当domain和range的数据是 N + 大于0 : N

(5)d3.scaleOrdinal 序数比例尺(离散性输入和离散性输出)

与scaleLinear等连续性比例尺不同,序数比例尺的输出域和输入域都是离散的。

使用示例:

存在三种映射关系:

a.当domain和range的数据是一一对应

b.当domain少于range的数据

c.当domain多于range的数据

通过以上的学习,应该对d3是如何操作DOM以及坐标轴的数据映射为相应的可视化表现有了一定的了解,下面我们来实际运用这两个模块,来实现我们常见的可视化图表:柱状图。

(1)首先添加一个SVG元素。

(2)根据我们上面说到 d3.scale 模块以及 d3.axis 模块绘制坐标轴,d3.scaleBand() 叫做序数分段比例尺,类似我们说的 d3.scaleOrdinal() 序数比例尺,但是它支持连续的数值类型的输出域,离散的输入域可以将连续的范围划分为均匀的分段。这里再讲一个细节,在绘制网格的时候,我们并没有额外添加 line 元素来实现,而是通过 d3.axis 坐标轴模块的 axis.ticks() 方法对坐标轴刻度进行了设置,通过 tickSIze() 设置了刻度线长度,来模拟和图表宽度相等的网格线,并且还可以通过 tickFormat() 对Y轴刻度值进行格式化转换。

(3)坐标轴绘制好了后,我们通过数据绑定来绘制与之对应的矩形(rect)元素了。

(4)这个时候柱状图已经基本绘制好了,我们再丰富内容展示,添加标签、标题等提示信息。

(5)最后我们通过给柱子绑定监听事件,实现tooltips的信息浮层交互。

通过对 d3.selection 、d3.scale 以及 d3.axis等模块的学习,我们已经可以绘制出常用的柱状图等图表,我们也可以通过d3提供的其他模块绘制出更加复杂的可视化效果,例如通过 d3-hierarchy(层级模块) 实现层级树图可视化,d3-geo(地理投影) 实现地图数据可视化等,本文讲解的内容还只是D3库的冰山一角。所以等我们掌握了D3后,限制我们实现可视化的不再是技术而是想象力。

《精通D3.js:交互式数据可视化高级编程》epub下载在线阅读,求百度网盘云资源

《精通D3.js:交互式数据可视化高级编程》(吕之华)电子书网盘下载免费在线阅读

链接:

提取码:annb

书名:精通D3.js:交互式数据可视化高级编程

作者:吕之华

豆瓣评分:6.7

出版社:电子工业出版社

出版年份:2015-9-1

页数:404

内容简介:

《精通D3.js:交互式数据可视化高级编程》以当前流行的数据可视化技术D3.js为主要内容,分为三大部分,共计13章。第一部分讲述基础知识,第二部分学习制作各种常见图表,第三部分讲解交互式图表及地图的进阶应用。《精通D3.js:交互式数据可视化高级编程》是一个相对完整的D3.js教程,讲解此技术所有重要的知识点,既有基础入门知识,又有相对深入的内容。笔者秉持以下原则:由易到难,循序渐进,图文并茂,清晰易懂。

《精通D3.js:交互式数据可视化高级编程》适合有一定计算机基础的读者,需要熟悉C、C++、Java、JavaScript等至少一门编程语言,能够理解基础的数据结构和算法。

作者简介:

吕之华,广西桂林人,1989年生。2012年毕业于西北农林科技大学软件工程专业,同年获日本政府国家奖学金赴日,就读于日本岩手大学设计与媒体专业,2015年获得硕士学位。目前正攻读博士学位。

2014年与好友创办OUR D3.JS数据可视化专题站,以D3.js为题发表一系列教学文章,获得读者好评。本书即以专题站的文章为基础扩充而成,经过耐心地归纳、整理、调查、修补,内容更加丰富易懂。

作者喜读儒家经典、三国演义等中国古籍,喜看古装剧,热爱中华传统文化。闲暇时练习书法,养气修身。工作之余喜欢旅游、健身、游泳。不喜与人相争,近来潜心研读儒佛道三家学说。


网站标题:关于javascript交互可视化的信息
本文来源:http://cqcxhl.cn/article/dsgeshh.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP