重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

mysql怎么扩展磁盘,mysql 扩展

18.3 mysql 怎样处理一个溢出的磁盘

1、drop table table_name 立刻释放磁盘空间 ,不管是 Innodb和MyISAM ;

创新互联坚信:善待客户,将会成为终身客户。我们能坚持多年,是因为我们一直可值得信赖。我们从不忽悠初访客户,我们用心做好本职工作,不忘初心,方得始终。10年网站建设经验创新互联是成都老牌网站营销服务商,为您提供网站设计制作、网站制作、网站设计、H5网站设计、网站制作、品牌网站制作、小程序定制开发服务,给众多知名企业提供过好品质的建站服务。

2、truncate table table_name 立刻释放磁盘空间 ,不管是 Innodb和MyISAM 。truncate table其实有点类似于drop table 然后creat,只不过这个create table 的过程做了优化,比如表结构文件之前已经有了等等。所以速度上应该是接近drop table的速度;

3、delete from table_name删除表的全部数据,对于MyISAM 会立刻释放磁盘空间 (应该是做了特别处理,也比较合理),InnoDB 不会释放磁盘空间;

4、对于delete from table_name where xxx带条件的删除, 不管是innodb还是MyISAM都不会释放磁盘空间;

5、delete操作以后使用optimize table table_name 会立刻释放磁盘空间。不管是innodb还是myisam 。所以要想达到释放磁盘空间的目的,delete以后执行optimize table 操作。

6、delete from表以后虽然未释放磁盘空间,但是下次插入数据的时候,仍然可以使用这部分空间。

CentOS7 扩展磁盘容量(虚拟机及物理机同理)

服务器是搭建在ESXI之上,安装LAMP环境到MySQL安装时突然报错,查看日志发现文件写入失败磁盘已满。

查看了下磁盘容量,果真已无多少剩余空间了,这次选择给磁盘空间作下扩充。

显示如下:

可见可用只剩260K,使用已经100%。

首先需要关闭操作系统,然后在设置中将磁盘调整到需要的容量。

如果选项是灰色的,说明虚拟机有快照,将其快照删除再操作。

VMware在虚拟机设置的硬盘里面有“扩展”按钮可以进行设置。

其他虚拟机也差不多的操作,可以百度查看。

物理机直接增加硬盘(接入新硬盘)即可。

显示信息:

说明增加了空间的磁盘是/dev/sda

分别键入以下参数:

使用partprobe重读分区表,或者reboot重启机器。

格式化/dev/sda3分区

进入lvm管理

LVM基础知识:

(1)初始化刚才的分区

(2)查看卷和卷组

要记下”VG Name”,例如这里是centos;再记下”Free PE/Size”的大小,例如这里是2048

(3)将初始化过的分区加入到VG卷组

刚才记下的”VG Name”就在这里使用。但是执行到这一步时报错了:

百度了下,因为磁盘剩余空间实在太小了,无法执行,删除一些数据就可以了。 我删除了/home目录和~目录下的文件。

(4)扩展已有卷的容量

lvextend指令用于在线扩展逻辑卷的空间大小,不中断应用程序对逻辑卷的访问。其后有两个选项

其余两个参数:2048是上边通过vgdisplay查看的Free PE/Size的大小,后边的目录参数/dev/mapper/centos-root可以通过df -h命令查看。

(5)查看卷容量并退出

上面的步骤只是卷扩容了,文件系统还没实现真正扩容

CentOS 7: 由于使用的是 XFS

CentOS 6:

注:本文参考felcon的“Esxi中CentOS7 扩展磁盘容量”文章进行操作和记录。

centos系统安装mysql磁盘不够怎么解决

1、首先你要确定你安装mysql == rpm -qa grep mysql 2、启动mysql服务 ==》 service mysqld start 3、登陆mysql客户端 == mysql

五大常见的MySQL高可用方案(最全)

1. 概述

我们在考虑MySQL数据库的高可用的架构时,主要要考虑如下几方面:

如果数据库发生了宕机或者意外中断等故障,能尽快恢复数据库的可用性,尽可能的减少停机时间,保证业务不会因为数据库的故障而中断。

用作备份、只读副本等功能的非主节点的数据应该和主节点的数据实时或者最终保持一致。

当业务发生数据库切换时,切换前后的数据库内容应当一致,不会因为数据缺失或者数据不一致而影响业务。

关于对高可用的分级在这里我们不做详细的讨论,这里只讨论常用高可用方案的优缺点以及高可用方案的选型。

2. 高可用方案

2.1. 主从或主主半同步复制

使用双节点数据库,搭建单向或者双向的半同步复制。在5.7以后的版本中,由于lossless replication、logical多线程复制等一些列新特性的引入,使得MySQL原生半同步复制更加可靠。

常见架构如下:

通常会和proxy、keepalived等第三方软件同时使用,即可以用来监控数据库的 健康 ,又可以执行一系列管理命令。如果主库发生故障,切换到备库后仍然可以继续使用数据库。

优点:

架构比较简单,使用原生半同步复制作为数据同步的依据;

双节点,没有主机宕机后的选主问题,直接切换即可;

双节点,需求资源少,部署简单;

缺点:

完全依赖于半同步复制,如果半同步复制退化为异步复制,数据一致性无法得到保证;

需要额外考虑haproxy、keepalived的高可用机制。

2.2. 半同步复制优化

半同步复制机制是可靠的。如果半同步复制一直是生效的,那么便可以认为数据是一致的。但是由于网络波动等一些客观原因,导致半同步复制发生超时而切换为异步复制,那么这时便不能保证数据的一致性。所以尽可能的保证半同步复制,便可提高数据的一致性。

该方案同样使用双节点架构,但是在原有半同复制的基础上做了功能上的优化,使半同步复制的机制变得更加可靠。

可参考的优化方案如下:

2.2.1. 双通道复制

半同步复制由于发生超时后,复制断开,当再次建立起复制时,同时建立两条通道,其中一条半同步复制通道从当前位置开始复制,保证从机知道当前主机执行的进度。另外一条异步复制通道开始追补从机落后的数据。当异步复制通道追赶到半同步复制的起始位置时,恢复半同步复制。

2.2.2. binlog文件服务器

搭建两条半同步复制通道,其中连接文件服务器的半同步通道正常情况下不启用,当主从的半同步复制发生网络问题退化后,启动与文件服务器的半同步复制通道。当主从半同步复制恢复后,关闭与文件服务器的半同步复制通道。

优点:

双节点,需求资源少,部署简单;

架构简单,没有选主的问题,直接切换即可;

相比于原生复制,优化后的半同步复制更能保证数据的一致性。

缺点:

需要修改内核源码或者使用mysql通信协议。需要对源码有一定的了解,并能做一定程度的二次开发。

依旧依赖于半同步复制,没有从根本上解决数据一致性问题。

2.3. 高可用架构优化

将双节点数据库扩展到多节点数据库,或者多节点数据库集群。可以根据自己的需要选择一主两从、一主多从或者多主多从的集群。

由于半同步复制,存在接收到一个从机的成功应答即认为半同步复制成功的特性,所以多从半同步复制的可靠性要优于单从半同步复制的可靠性。并且多节点同时宕机的几率也要小于单节点宕机的几率,所以多节点架构在一定程度上可以认为高可用性是好于双节点架构。

但是由于数据库数量较多,所以需要数据库管理软件来保证数据库的可维护性。可以选择MMM、MHA或者各个版本的proxy等等。常见方案如下:

2.3.1. MHA+多节点集群

MHA Manager会定时探测集群中的master节点,当master出现故障时,它可以自动将最新数据的slave提升为新的master,然后将所有其他的slave重新指向新的master,整个故障转移过程对应用程序完全透明。

MHA Node运行在每台MySQL服务器上,主要作用是切换时处理二进制日志,确保切换尽量少丢数据。

MHA也可以扩展到如下的多节点集群:

优点:

可以进行故障的自动检测和转移;

可扩展性较好,可以根据需要扩展MySQL的节点数量和结构;

相比于双节点的MySQL复制,三节点/多节点的MySQL发生不可用的概率更低

缺点:

至少需要三节点,相对于双节点需要更多的资源;

逻辑较为复杂,发生故障后排查问题,定位问题更加困难;

数据一致性仍然靠原生半同步复制保证,仍然存在数据不一致的风险;

可能因为网络分区发生脑裂现象;

2.3.2. zookeeper+proxy

Zookeeper使用分布式算法保证集群数据的一致性,使用zookeeper可以有效的保证proxy的高可用性,可以较好的避免网络分区现象的产生。

优点:

较好的保证了整个系统的高可用性,包括proxy、MySQL;

扩展性较好,可以扩展为大规模集群;

缺点:

数据一致性仍然依赖于原生的mysql半同步复制;

引入zk,整个系统的逻辑变得更加复杂;

2.4. 共享存储

共享存储实现了数据库服务器和存储设备的解耦,不同数据库之间的数据同步不再依赖于MySQL的原生复制功能,而是通过磁盘数据同步的手段,来保证数据的一致性。

2.4.1. SAN共享储存

SAN的概念是允许存储设备和处理器(服务器)之间建立直接的高速网络(与LAN相比)连接,通过这种连接实现数据的集中式存储。常用架构如下:

使用共享存储时,MySQL服务器能够正常挂载文件系统并操作,如果主库发生宕机,备库可以挂载相同的文件系统,保证主库和备库使用相同的数据。

优点:

两节点即可,部署简单,切换逻辑简单;

很好的保证数据的强一致性;

不会因为MySQL的逻辑错误发生数据不一致的情况;

缺点:

需要考虑共享存储的高可用;

价格昂贵;

2.4.2. DRBD磁盘复制

DRBD是一种基于软件、基于网络的块复制存储解决方案,主要用于对服务器之间的磁盘、分区、逻辑卷等进行数据镜像,当用户将数据写入本地磁盘时,还会将数据发送到网络中另一台主机的磁盘上,这样的本地主机(主节点)与远程主机(备节点)的数据就可以保证实时同步。常用架构如下:

当本地主机出现问题,远程主机上还保留着一份相同的数据,可以继续使用,保证了数据的安全。

DRBD是linux内核模块实现的快级别的同步复制技术,可以与SAN达到相同的共享存储效果。

优点:

两节点即可,部署简单,切换逻辑简单;

相比于SAN储存网络,价格低廉;

保证数据的强一致性;

缺点:

对io性能影响较大;

从库不提供读操作;

2.5. 分布式协议

分布式协议可以很好解决数据一致性问题。比较常见的方案如下:

2.5.1. MySQL cluster

MySQL cluster是官方集群的部署方案,通过使用NDB存储引擎实时备份冗余数据,实现数据库的高可用性和数据一致性。

优点:

全部使用官方组件,不依赖于第三方软件;

可以实现数据的强一致性;

缺点:

国内使用的较少;

配置较复杂,需要使用NDB储存引擎,与MySQL常规引擎存在一定差异;

至少三节点;

2.5.2. Galera

基于Galera的MySQL高可用集群, 是多主数据同步的MySQL集群解决方案,使用简单,没有单点故障,可用性高。常见架构如下:

优点:

多主写入,无延迟复制,能保证数据强一致性;

有成熟的社区,有互联网公司在大规模的使用;

自动故障转移,自动添加、剔除节点;

缺点:

需要为原生MySQL节点打wsrep补丁

只支持innodb储存引擎

至少三节点;

2.5.3. POAXS

Paxos 算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。这个算法被认为是同类算法中最有效的。Paxos与MySQL相结合可以实现在分布式的MySQL数据的强一致性。常见架构如下:

优点:

多主写入,无延迟复制,能保证数据强一致性;

有成熟理论基础;

自动故障转移,自动添加、剔除节点;

缺点:

只支持innodb储存引擎

至少三节点;

3. 总结

随着人们对数据一致性的要求不断的提高,越来越多的方法被尝试用来解决分布式数据一致性的问题,如MySQL自身的优化、MySQL集群架构的优化、Paxos、Raft、2PC算法的引入等等。

而使用分布式算法用来解决MySQL数据库数据一致性的问题的方法,也越来越被人们所接受,一系列成熟的产品如PhxSQL、MariaDB Galera Cluster、Percona XtraDB Cluster等越来越多的被大规模使用。

随着官方MySQL Group Replication的GA,使用分布式协议来解决数据一致性问题已经成为了主流的方向。期望越来越多优秀的解决方案被提出,MySQL高可用问题可以被更好的解决。

mysql集群磁盘表空间怎样自动扩展

  使用SHOW MASTER LOGS获得主服务器上的一系列日志。

在所有的从属服务器中判定最早的日志,这个是目标日志,如果所有的从属服务器是更新的,就是清单上的最后一个日志。

清理所有的日志,但是不包括目标日志,因为从服务器还要跟它同步。

清理日志方法为:

PURGE MASTER LOGS TO 'mysql-bin.010';

PURGE MASTER LOGS BEFORE '2008-12-19 21:00:00';

如果你确定从服务器已经同步过了,跟主服务器一样了,那么可以直接RESET MASTER将这些文件删除。

mysql 如何分配内存

我们仍然使用两个会话,一个会话 run,用于运行主 SQL;另一个会话 ps,用于进行 performance_schema 的观察:

主会话线程号为 29,

将 performance_schema 中的统计量重置,

临时表的表大小限制取决于参数  tmp_table_size 和 max_heap_table_size 中较小者,我们实验中以设置 max_heap_table_size 为例。

我们将会话级别的临时表大小设置为 2M(小于上次实验中临时表使用的空间),执行使用临时表的 SQL:

查看内存的分配记录:

会发现内存分配略大于 2M,我们猜测临时表会比配置略多一点消耗,可以忽略。

查看语句的特征值:

可以看到语句使用了一次需要落磁盘的临时表。

那么这张临时表用了多少的磁盘呢?

我们开启 performance_schema 中 waits 相关的统计项:

重做实验,略过。

再查看 performance_schema 的统计值:

可以看到几个现象:

1. 临时表空间被写入了 7.92MiB 的数据。

2. 这些数据是语句写入后,慢慢逐渐写入的。

来看看这些写入操作的特征,该方法我们在 实验 03 使用过:

可以看到写入的线程是 page_clean_thread,是一个刷脏操作,这样就能理解数据为什么是慢慢写入的。

也可以看到每个 IO 操作的大小是 16K,也就是刷数据页的操作。

结论:

我们可以看到,

1. MySQL 会基本遵守 max_heap_table_size 的设定,在内存不够用时,直接将表转到磁盘上存储。

2. 由于引擎不同(内存中表引擎为 heap,磁盘中表引擎则跟随 internal_tmp_disk_storage_engine 的配置),本次实验写磁盘的数据量和 实验 05 中使用内存的数据量不同。

3. 如果临时表要使用磁盘,表引擎配置为 InnoDB,那么即使临时表在一个时间很短的 SQL 中使用,且使用后即释放,释放后也会刷脏页到磁盘中,消耗部分 IO。


本文标题:mysql怎么扩展磁盘,mysql 扩展
转载注明:http://cqcxhl.cn/article/dsihdeo.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP