重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本系列课程要求大家有一定的R语言基础,对于完全零基础的同学,建议去听一下师兄的《生信必备技巧之——R语言基础教程》。本课程将从最基本的绘图开始讲解,深入浅出的带大家理解和运用强大而灵活的ggplot2包。内容包括如何利用ggplot2绘制散点图、线图、柱状图、添加注解、修改坐标轴和图例等。
目前创新互联公司已为上1000+的企业提供了网站建设、域名、雅安服务器托管、网站托管、服务器托管、企业网站设计、来宾网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
本次课程所用的配套书籍是: 《R Graphic Cookbooks》
除了以上的基本图形外,师兄还会给大家讲解箱线图、提琴图、热图、火山图、气泡图、桑基图、PCA图等各种常用的生信图形的绘制,还不赶紧加入收藏夹,跟着师兄慢慢学起来吧!
柱状图可能是最常用的一种数据可视化。它们通常用于显示数值(在y轴上),用于显示不同类别的数值(在x轴上)。例如,柱状图可以用来显示四种不同商品的价格。柱状图通常不适合显示一段时间内的价格,因为时间是一个连续的变量。
在制作柱状图时,您应该注意一个重要的区别:柱状图的高度有时表示数据集中的案例数,有时表示数据集中的值。记住这一区别——这可能会引起混淆,因为它们与数据的关系非常不同,但两者使用相同的术语。
拓展: position参数: 此处的position主要是指对图像的微调,最常见的应用是在分组的柱形图(bar)中,因为分组的柱形图会产生组内堆积和不堆积两种主要效果。
前面我给大家详细介绍过
☞GO简介及GO富集结果解读
☞四种GO富集柱形图、气泡图解读
☞GO富集分析四种风格展示结果—柱形图,气泡图
☞KEGG富集分析—柱形图,气泡图,通路图
☞ DAVID GO和KEGG富集分析及结果可视化
也用视频给大家介绍过
☞ GO和KEGG富集分析视频讲解
最近有粉丝反映说,利用clusterProfiler这个包绘制GO富集分析气泡图和柱形图的时候,发现GO条目的名字都重叠在一起了。
气泡图
柱形图
这个图别说美观了,简直不忍直视。经过我的认真研究,发现跟R版本有关。前面我给大家展示的基本都是R 3.6.3做出来的图。很多粉丝可能用的都是最新版本的R 4.1.2。
我们知道R的版本在不停的更新,相应的R包也在不停的更新。我把绘制气泡图和柱形图相关的函数拿出来认真的研究了一下,终于发现的症结所在。
dotplot这个函数,多了个 label_format 参数
我们来看看这个参数究竟是干什么用的,看看参数说明
label_format :
a numeric value sets wrap length, alternatively a custom function to format axis labels. by default wraps names longer that 30 characters
原来这个参数默认值是30,当标签的长度大于30个字符就会被折叠,用多行来展示。既然问题找到了,我们就来调节一下这个参数,把他设置成100,让我们的标签可以一行展示。
是不是还是原来的配方,还是熟悉的味道
同样的柱形图,我们也能让他恢复原来的容貌。
关于如何使用R做GO和KEGG富集分析,可参考下文
GO和KEGG富集分析视频讲解
直方图又称柱状图/条形图,用来展示连续数据分布的常用工具,用来估计数据的概率分布。
使用格式:hist(x,breaks=n,main="name",labels=FASLE,col="blue",border="red",freq=TRUE)
x 向量,直方图的数据;
breaks 描直方图的断点,例如breaks=20表示画出20个柱子;
labels 逻辑变量,TRUE标出频数
main 标题
col 颜色
border外框颜色
freq 逻辑变量,TRUE为数据频数,默认为TRUE;FALSE则为密度
我们可以用lines画出数据的密度曲线
还可以画正态分布的密度曲线
使用格式 ggplot(data,aes(x=class))+geom_bar()
x 绘制的数据
或者 ggplot(data,aes(y=class))+geom_bar(),则类型分布在y轴
当想看在该因素中其他因素的情况,可以利用fill进行绘制,得出叠堆条形图
横向的柱状
大多数时候我们想比较多个组直接某些因素的情况,例如有时候我们要画几个样本中各个细胞比例的情况
这是我们可以画堆叠条形图
此时不好比较,我们可以把同类型细胞放在一块比较,即横坐标变为细胞类型
在实验过程中可以采用容易分析的形式进行比较
以上是基本绘制的参数,此外还有美化的一些参数
labs 横纵坐标轴的名称
ggttitle 标题名称
geom_bar(width= )设置条形大小,默认情况下,设置为数据分辨率的90%。
theme_bw() 改变背景颜色
scale_fill_manual 自定义颜色
更多参数见 R语言绘图——数据可视化ggplot2 介绍和主要的参数