重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

C语言典型题——求菲波那切数列第N项-创新互联

菲波那切数列*

1.引入
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

成都创新互联,为您提供网站建设网站制作、网站营销推广、网站开发设计,对服务成都建筑动画等多个行业拥有丰富的网站建设及推广经验。成都创新互联网站建设公司成立于2013年,提供专业网站制作报价服务,我们深知市场的竞争激烈,认真对待每位客户,为客户提供赏心悦目的作品。 与客户共同发展进步,是我们永远的责任!

2.定义
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368
........这个数列从第3项开始,每一项都等于前两项之和。
斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。
3.求解

1. 递归方法

C语言典型题——求菲波那切数列第N项
根据这个公式,应用递归调用可以很好的求解菲波那切数列第N项,以下为求解过程(源代码):

#include
#include
int fib(int n)
{
    if (n <= 2)
        return  1;
    else 
        return  fib(n - 1) + fib(n - 2);
}
int main()
{
    int n = 0;
    int ret = 0;

    scanf("%d",&n);
    ret = fib(n);
    printf("%d\n", ret);
    system("pause");

    return 0;
}

我们在验证前几个菲波那切数列都没有问题,但是这样就完了吗?不,其实再往下走,比如给个50他就算不出来了。这是为什么呢,仔细想想就不难发现:原来每次递归调用都会把一个值重复算好多遍,我们用个例子来验证一下:

#include
#include
int count = 0;
int fib(int n)
{

    if (n == 3)
        count++;
    if (n <= 2)
        return  1;
    else 
        return  fib(n - 1) + fib(n - 2);
}
int main()
{
    int n = 0;
    int ret = 0;

    scanf("%d",&n);
    ret = fib(n);
    printf("%d\n", ret);
    printf("%d\n", count);
    system("pause");

    return 0;
}

这个代码输出结果为
C语言典型题——求菲波那切数列第N项
这里我们定义一个全局变量count,这里只仅仅计算了fib(3)被重复计算的次数就已经这么大了,可想而知这个代码输入的N值一旦很大计算效率就会变得极其差,那么怎么解决这个问题呢,下面在引进一个方法:

2.非递归——迭代(即循环)

我们怎么做呢,就是这样:前三个菲波那切数我们知道,我们可不可以利用迭代来计算后面的斐波那契数呢,显然是可以的。我们可以这样想:首先让a=1,b=1我们让c=a+b然后利用循环来交换a,b,c的值不就好了。可是如何实现呢,以下分享一下我的想法:

#include
#include
int fib(int n)
{
    int a = 1;
    int b = 1;
    int c = 0;
   while (n > 2)
    {
        c = a + b;
        a = b;
        b = c;
        n--;
    }
    return c;
}
int main()
{
    int n = 0;
    int ret = 0;

    scanf("%d",&n);
    ret = fib(n);
    printf("%d\n", ret);
    system("pause");

    return 0;
}

这个思想可以这样实现,可是又出现一个问题,当n太大时数存不下来,从而导致计算可能有点问题,所以还是需要大佬们来完善一下。可是这个的效率绝对比上面的递归方法要高很多,这个计算比较小的n还是挺快的。
这里我们看到有些问题可以用递归去做,但是不适用递归解决它,否则只会适得其反。希望在小伙伴们的评论区里找到更好的解决办法哦。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前名称:C语言典型题——求菲波那切数列第N项-创新互联
文章URL:http://cqcxhl.cn/article/eecpe.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP