重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍了python聚类算法指的是什么,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
成都创新互联公司制作网站网页找三站合一网站制作公司,专注于网页设计,做网站、成都网站设计,网站设计,企业网站搭建,网站开发,建网站业务,680元做网站,已为成百上千服务,成都创新互联公司网站建设将一如既往的为我们的客户提供最优质的网站建设、网络营销推广服务!
说明
1、聚类常用于数据探索或挖掘前期,在没有先验经验的背景下进行探索性分析,也适用于样本量大的数据预处理。
2、常用的聚类算法分为基于划分、层次、密度、网格、统计、模型等类型的算法。典型算法包括K均值(经典聚类算法)、DBSCAN、两步聚类、BIRCH、谱聚类等。
聚类分析可以解决的问题包括:数据集可以分为几类,每个类别有多少样本,不同类别中每个变量的强弱关系,不同类别的典型特征是什么。
聚类算法之K均值实例
import numpy as np import matplotlib.pyplot as plt # 两点距离 def distance(e1, e2): return np.sqrt((e1[0]-e2[0])**2+(e1[1]-e2[1])**2) # 集合中心 def means(arr): return np.array([np.mean([e[0] for e in arr]), np.mean([e[1] for e in arr])]) # arr中距离a最远的元素,用于初始化聚类中心 def farthest(k_arr, arr): f = [0, 0] max_d = 0 for e in arr: d = 0 for i in range(k_arr.__len__()): d = d + np.sqrt(distance(k_arr[i], e)) if d > max_d: max_d = d f = e return f # arr中距离a最近的元素,用于聚类 def closest(a, arr): c = arr[1] min_d = distance(a, arr[1]) arr = arr[1:] for e in arr: d = distance(a, e) if d < min_d: min_d = d c = e return c if __name__=="__main__": ## 生成二维随机坐标,手上有数据集的朋友注意,理解arr改起来就很容易了 ## arr是一个数组,每个元素都是一个二元组,代表着一个坐标 ## arr形如:[ (x1, y1), (x2, y2), (x3, y3) ... ] arr = np.random.randint(100, size=(100, 1, 2))[:, 0, :] ## 初始化聚类中心和聚类容器 m = 5 r = np.random.randint(arr.__len__() - 1) k_arr = np.array([arr[r]]) cla_arr = [[]] for i in range(m-1): k = farthest(k_arr, arr) k_arr = np.concatenate([k_arr, np.array([k])]) cla_arr.append([]) ## 迭代聚类 n = 20 cla_temp = cla_arr for i in range(n): # 迭代n次 for e in arr: # 把集合里每一个元素聚到最近的类 ki = 0 # 假定距离第一个中心最近 min_d = distance(e, k_arr[ki]) for j in range(1, k_arr.__len__()): if distance(e, k_arr[j]) < min_d: # 找到更近的聚类中心 min_d = distance(e, k_arr[j]) ki = j cla_temp[ki].append(e) # 迭代更新聚类中心 for k in range(k_arr.__len__()): if n - 1 == i: break k_arr[k] = means(cla_temp[k]) cla_temp[k] = [] ## 可视化展示 col = ['HotPink', 'Aqua', 'Chartreuse', 'yellow', 'LightSalmon'] for i in range(m): plt.scatter(k_arr[i][0], k_arr[i][1], linewidth=10, color=col[i]) plt.scatter([e[0] for e in cla_temp[i]], [e[1] for e in cla_temp[i]], color=col[i]) plt.show()
感谢你能够认真阅读完这篇文章,希望小编分享的“python聚类算法指的是什么”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!