重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
了解python中的yield有什么用?这个问题可能是我们日常学习或工作经常见到的。希望通过这个问题能让你收获颇深。下面是小编给大家带来的参考内容,让我们一起来看看吧!
成都创新互联是一家专业提供伊金霍洛企业网站建设,专注与网站设计、网站建设、H5场景定制、小程序制作等业务。10年已为伊金霍洛众多企业、政府机构等服务。创新互联专业网站建设公司优惠进行中。
阅读别人的python源码时碰到了这个yield这个关键字,各种搜索终于搞懂了,在此做一下总结:
通常的for…in…循环中,in后面是一个数组,这个数组就是一个可迭代对象,类似的还有链表,字符串,文件。它可以是mylist
= [1, 2, 3],也可以是mylist = [x*x for x in range(3)]。 它的缺陷是所有数据都在内存中,如果有海量数据的话将会非常耗内存。
生成器是可以迭代的,但只可以读取它一次。因为用的时候才生成。比如 mygenerator = (x*x for x in
range(3)),注意这里用到了(),它就不是数组,而上面的例子是[]。
我理解的生成器(generator)能够迭代的关键是它有一个next()方法,工作原理就是通过重复调用next()方法,直到捕获一个异常。可以用上面的mygenerator测试。
带有 yield 的函数不再是一个普通函数,而是一个生成器generator,可用于迭代,工作原理同上。
yield 是一个类似 return
的关键字,迭代一次遇到yield时就返回yield后面的值。重点是:下一次迭代时,从上一次迭代遇到的yield后面的代码开始执行。
简要理解:yield就是 return 返回一个值,并且记住这个返回的位置,下次迭代就从这个位置后开始。
带有yield的函数不仅仅只用于for循环中,而且可用于某个函数的参数,只要这个函数的参数允许迭代参数。比如array.extend函数,它的原型是array.extend(iterable)。
send(msg)与next()的区别在于send可以传递参数给yield表达式,这时传递的参数会作为yield表达式的值,而yield的参数是返回给调用者的值。——换句话说,就是send可以强行修改上一个yield表达式值。比如函数中有一个yield赋值,a
= yield 5,第一次迭代到这里会返回5,a还没有赋值。第二次迭代时,使用.send(10),那么,就是强行修改yield 5表达式的值为10,本来是5的,那么a=10
send(msg)与next()都有返回值,它们的返回值是当前迭代遇到yield时,yield后面表达式的值,其实就是当前迭代中yield后面的参数。
第一次调用时必须先next()或send(None),否则会报错,send后之所以为None是因为这时候没有上一个yield(根据第8条)。可以认为,next()等同于send(None)。
yield简单说来就是一个生成器,生成器是这样一个函数,它记住上一次返回时在函数体中的位置。对生成器函数的第二次(或第 n 次)调用跳转至该函数中间,而上次调用的所有局部变量都保持不变。
生成器是一个函数,
函数的所有参数都会保留,
第二次调用此函数时,
使用的参数是前一次保留下的。
生成器还“记住”了它在流控制构造。
生成器不仅“记住”了它数据状态。 生成器还“记住”了它在流控制构造(在命令式编程中,这种构造不只是数据值)中的位置。由于连续性使您在执行框架间任意跳转,而不总是返回到直接调用者的上下文(如同生成器那样),因此它仍是比较一般的。
yield生成器的运行机制
当你问生成器要一个数时,生成器会执行,直至出现 yield 语句,生成器把 yield 的参数给你,之后生成器就不会往下继续运行。 当你问他要下一个数时,他会从上次的状态开始运行,直至出现yield语句,把参数给你,之后停下。如此反复直至退出函数。
例子:Python 排列,组合生成器
生成全排列
def perm(items, n=None): if n is None: n = len(items) for i in range(len(items)): v = items[i:i+1] if n == 1: yield v else: rest = items[:i] + items[i+1:] for p in perm(rest, n-1): yield v + p
生成组合
def comb(items, n=None): if n is None: n = len(items) for i in range(len(items)): v = items[i:i+1] if n == 1: yield v else: rest = items[i+1:] for c in comb(rest, n-1): yield v + c a = perm('abc') for b in a: print b break print '-'*20 for b in a: print b
结果如下:
102 pvopf006 ~/test> ./generator.py abc -------------------- acb bac bca cab cba
可以看到,在第一个循环break后,生成器没有继续执行,而第二个循环接着第一个循环执行。
感谢各位的阅读!看完上述内容,你们对python中的yield有什么用大概了解了吗?希望文章内容对大家有所帮助。如果想了解更多相关文章内容,欢迎关注创新互联行业资讯频道。