重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

PostgreSQL源码解读(232)-查询#125(NOTIN实现#3)

本节介绍了PostgreSQL含有NOT IN查询语句实现ExecMaterial函数中部分依赖的函数。

我们提供的服务有:做网站、成都网站设计、微信公众号开发、网站优化、网站认证、万柏林ssl等。为超过千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的万柏林网站制作公司

一、数据结构

SubPlanState
子计划运行期状态


/* ----------------
 *        SubPlanState node
 * ----------------
 */
typedef struct SubPlanState
{
    NodeTag        type;
    SubPlan    *subplan;        /* expression plan node */
    struct PlanState *planstate;    /* subselect plan's state tree */
    struct PlanState *parent;    /* parent plan node's state tree */
    ExprState  *testexpr;        /* 组合表达式状态;state of combining expression */
    List       *args;            /* 参数表达式状态;states of argument expression(s) */
    HeapTuple    curTuple;        /* subplan最近的元组;copy of most recent tuple from subplan */
    Datum        curArray;        /* most recent array from ARRAY() subplan */
    /* these are used when hashing the subselect's output: */
    TupleDesc    descRight;        /* 投影后的子查询描述符;subselect desc after projection */
    ProjectionInfo *projLeft;    /* for projecting lefthand exprs */
    ProjectionInfo *projRight;    /* for projecting subselect output */
    TupleHashTable hashtable;    /* hash table for no-nulls subselect rows */
    TupleHashTable hashnulls;    /* hash table for rows with null(s) */
    bool        havehashrows;    /* true if hashtable is not empty */
    bool        havenullrows;    /* true if hashnulls is not empty */
    MemoryContext hashtablecxt; /* memory context containing hash tables */
    MemoryContext hashtempcxt;    /* temp memory context for hash tables */
    ExprContext *innerecontext; /* econtext for computing inner tuples */
    AttrNumber *keyColIdx;        /* control data for hash tables */
    Oid           *tab_eq_funcoids;    /* equality func oids for table
                                     * datatype(s) */
    Oid           *tab_collations; /* collations for hash and comparison */
    FmgrInfo   *tab_hash_funcs; /* hash functions for table datatype(s) */
    FmgrInfo   *tab_eq_funcs;    /* equality functions for table datatype(s) */
    FmgrInfo   *lhs_hash_funcs; /* hash functions for lefthand datatype(s) */
    FmgrInfo   *cur_eq_funcs;    /* equality functions for LHS vs. table */
    ExprState  *cur_eq_comp;    /* equality comparator for LHS vs. table */
} SubPlanState;

SubPlan
子查询计划


/*
 * SubPlan - executable expression node for a subplan (sub-SELECT)
 *
 * The planner replaces SubLink nodes in expression trees with SubPlan
 * nodes after it has finished planning the subquery.  SubPlan references
 * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
 * (We avoid a direct link to make it easier to copy expression trees
 * without causing multiple processing of the subplan.)
 * 查询规划器在完成子查询的规划后使用SubPlan节点替换表达式树中的SubLink节点。
 * SubPlan引用了存储在高层PlannedStmt中的subplans链表中的sub-plantree。
 * (避免使用直接链接,从而使得拷贝表达式树相对比较简单)
 *
 * In an ordinary subplan, testexpr points to an executable expression
 * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
 * operator(s); the left-hand arguments are the original lefthand expressions,
 * and the right-hand arguments are PARAM_EXEC Param nodes representing the
 * outputs of the sub-select.  (NOTE: runtime coercion functions may be
 * inserted as well.)  This is just the same expression tree as testexpr in
 * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
 * suitably numbered PARAM_EXEC nodes.
 * 常规情况下,testexpr指向用于组合操作的可执行表达式(OpExpr、OpExprs的AND/OR树或者RowCompareExpr);
 * 左参数是原始的左表达式,右参数是PARAM_EXEC参数节点用以表示子查询的输出。
 * 与原始SubLink节点的testexpr具有相同的表达式树,但PARAM_SUBLINK节点则使用合适的已编号PARAM_EXEC节点替代。
 *
 * If the sub-select becomes an initplan rather than a subplan, the executable
 * expression is part of the outer plan's expression tree (and the SubPlan
 * node itself is not, but rather is found in the outer plan's initPlan
 * list).  In this case testexpr is NULL to avoid duplication.
 * 如果子查询成了initplan而不是subplan,可执行的表达式是外层plan表达式树的一部分。
 * 这种情况下,testexpr为NULL以避免重复。
 *
 * The planner also derives lists of the values that need to be passed into
 * and out of the subplan.  Input values are represented as a list "args" of
 * expressions to be evaluated in the outer-query context (currently these
 * args are always just Vars, but in principle they could be any expression).
 * The values are assigned to the global PARAM_EXEC params indexed by parParam
 * (the parParam and args lists must have the same ordering).  setParam is a
 * list of the PARAM_EXEC params that are computed by the sub-select, if it
 * is an initplan; they are listed in order by sub-select output column
 * position.  (parParam and setParam are integer Lists, not Bitmapsets,
 * because their ordering is significant.)
 * 规划器还派生了需要传入和传出子计划的值的链表。
 * 输入值标识位表达式的“args”链表,在外层查询上下文中进行解析。
 * (这些args通常是Vars,但原则上它们可以是任意表达式)
 * 这些值以parParam为索引给全局PARAM_EXEC参数赋值。
 * setParam是PARAM_EXEC参数链表,通过子查询(如为initplan)计算所得。
 * 它们按子查询输出列的位置进行排序组织为链表形式。
 * (parParam和setParam是整型链表,而不是Bitmapsets链表)
 *
 * Also, the planner computes startup and per-call costs for use of the
 * SubPlan.  Note that these include the cost of the subquery proper,
 * evaluation of the testexpr if any, and any hashtable management overhead.
 * 同时,规划器计算SubPlan启动和每次调用的成本。注意:包括子查询正常解析testexpr的成本以及哈希表管理成本。
 */
typedef struct SubPlan
{
    Expr        xpr;//表达式
    /* Fields copied from original SubLink: */
    //从SubLink中拷贝而来
    SubLinkType subLinkType;    /* see above */
    /* The combining operators, transformed to an executable expression: */
    //组合操作符,转换为可执行的表达式
    Node       *testexpr;        /* OpExpr or RowCompareExpr expression tree */
    List       *paramIds;        /* 参数IDs;IDs of Params embedded in the above */
    /* Identification of the Plan tree to use: */
    //Plan tree标识
    int            plan_id;        /* Index (from 1) in PlannedStmt.subplans */
    /* Identification of the SubPlan for EXPLAIN and debugging purposes: */
    //EXPLAIN和debug目的的SubPlan标识
    char       *plan_name;        /* A name assigned during planning */
    /* Extra data useful for determining subplan's output type: */
    //用于确定subplan输出类型的额外信息
    Oid            firstColType;    /* subplan结果的第一个列类型;Type of first column of subplan result */
    int32        firstColTypmod; /* 第一列的Typmod;Typmod of first column of subplan result */
    Oid            firstColCollation;    /* 第一列的Collation;Collation of first column of subplan
                                     * result */
    /* Information about execution strategy: */
    //执行阶段的相关信息
    bool        useHashTable;    /* 是否使用哈希表存储子查询输出;true to store subselect output in a hash
                                 * table (implies we are doing "IN") */
    bool        unknownEqFalse; /* 如OK为T,如为未知则为F;快速处理null值;true if it's okay to return FALSE when the
                                 * spec result is UNKNOWN; this allows much
                                 * simpler handling of null values */
    bool        parallel_safe;    /* 是否并行安全?is the subplan parallel-safe? */
    /* Note: parallel_safe does not consider contents of testexpr or args */
    /* Information for passing params into and out of the subselect: */
    //用于给子查询传入和传出参数的信息
    /* setParam and parParam are lists of integers (param IDs) */
    //setParam和parParam是整型链表(param IDs)
    List       *setParam;        /* initplan subqueries have to set these
                                 * Params for parent plan */
    List       *parParam;        /* indices of input Params from parent plan */
    List       *args;            /* 以parParam值进行传递的表达式;exprs to pass as parParam values */
    /* Estimated execution costs: */
    //估算执行成本
    Cost        startup_cost;    /* one-time setup cost */
    Cost        per_call_cost;    /* cost for each subplan evaluation */
} SubPlan;

SubLinkType
SubLink类型


/*
 * SubLink
 *
 * A SubLink represents a subselect appearing in an expression, and in some
 * cases also the combining operator(s) just above it.  The subLinkType
 * indicates the form of the expression represented:
 *    EXISTS_SUBLINK        EXISTS(SELECT ...)
 *    ALL_SUBLINK            (lefthand) op ALL (SELECT ...)
 *    ANY_SUBLINK            (lefthand) op ANY (SELECT ...)
 *    ROWCOMPARE_SUBLINK    (lefthand) op (SELECT ...)
 *    EXPR_SUBLINK        (SELECT with single targetlist item ...)
 *    MULTIEXPR_SUBLINK    (SELECT with multiple targetlist items ...)
 *    ARRAY_SUBLINK        ARRAY(SELECT with single targetlist item ...)
 *    CTE_SUBLINK            WITH query (never actually part of an expression)
 *  我们使用SubLink表示在表达式中出现的子查询,在某些情况下组合操作符会出现在SubLink之上。
 *  subLinkType表示表达式的形式:
 *    EXISTS_SUBLINK        EXISTS(SELECT ...)
 *    ALL_SUBLINK            (lefthand) op ALL (SELECT ...)
 *    ANY_SUBLINK            (lefthand) op ANY (SELECT ...)
 *    ROWCOMPARE_SUBLINK    (lefthand) op (SELECT ...)
 *    EXPR_SUBLINK        (SELECT with single targetlist item ...)
 *    MULTIEXPR_SUBLINK    (SELECT with multiple targetlist items ...)
 *    ARRAY_SUBLINK        ARRAY(SELECT with single targetlist item ...)
 *    CTE_SUBLINK            WITH query (never actually part of an expression) 
 *
 * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
 * same length as the subselect's targetlist.  ROWCOMPARE will *always* have
 * a list with more than one entry; if the subselect has just one target
 * then the parser will create an EXPR_SUBLINK instead (and any operator
 * above the subselect will be represented separately).
 * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
 * one row (if it returns no rows, the result is NULL).
 * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
 * results.  ALL and ANY combine the per-row results using AND and OR
 * semantics respectively.
 * ARRAY requires just one target column, and creates an array of the target
 * column's type using any number of rows resulting from the subselect.
 * 对于ALL,ANY和ROWCOMPARE,左操作符是与子查询目标链表长度一致的表达式链表。
 * ROWCOMPARE通常有超过一个条目的链表;如果子查询刚好只有一个目标列,那么解析器会创建EXPR_SUBLINK
 * (同时所有在子查询之上的操作符会单独表示)
 * ROWCOMPARE, EXPR, 和MULTIEXPR要求子查询至少输出一行(如返回0行,则结果为NULL)。
 * ALL,ANY和ROWCOMPARE要求组合操作符输出布尔型结果。
 * ALL/ANY使用AND/OR语义来组合每一行的结果。
 *
 * SubLink is classed as an Expr node, but it is not actually executable;
 * it must be replaced in the expression tree by a SubPlan node during
 * planning.
 * SubLink归类为Expr节点,但实际上并不是可执行的,必须在计划阶段通过SubPlan替代。
 *
 * NOTE: in the raw output of gram.y, testexpr contains just the raw form
 * of the lefthand expression (if any), and operName is the String name of
 * the combining operator.  Also, subselect is a raw parsetree.  During parse
 * analysis, the parser transforms testexpr into a complete boolean expression
 * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
 * output columns of the subselect.  And subselect is transformed to a Query.
 * This is the representation seen in saved rules and in the rewriter.
 * 注意:在gram.y的裸输出中,testexpr只包含左表达式的裸形式,operName是组合操作符的字符串名称。
 * 同时,子查询是裸parsetree。在解析分析期间,
 * 解析器转换testexpr为完整的布尔表达式用于比较左操作符值与PARAM_SUBLINK节点所代表的子查询输出列值。
 * 子查询会转换为Query结构体。
 * 在已存储的规则和重写时可见的表示形式。
 *
 * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
 * are unused and are always null.
 * 在EXISTS/EXPR/MULTEXPR/ARRAY SubLinks中,testexpr和operName不再使用通常是NULL值。
 *
 * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
 * other SubLinks.  This number identifies different multiple-assignment
 * subqueries within an UPDATE statement's SET list.  It is unique only
 * within a particular targetlist.  The output column(s) of the MULTIEXPR
 * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
 * subLinkId当前只用于MULTIEXPR,在其他SubLinks中取值为0.
 * 该数字标识了在UPDATE语句SET链表中不同的多个赋值子查询。
 * 只有在特定的targetlist内是唯一的。
 * 出现在tlist其他地方的PARAM_MULTIEXPR参数依赖于MULTIEXPR的输出列。
 *
 * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
 * in SubPlans generated for WITH subqueries.
 * CTE_SUBLINK不会出现在实际的SubLink节点中,但用于WITH子查询所产生的SubPlans中。
 */
typedef enum SubLinkType
{
    EXISTS_SUBLINK,
    ALL_SUBLINK,
    ANY_SUBLINK,
    ROWCOMPARE_SUBLINK,
    EXPR_SUBLINK,
    MULTIEXPR_SUBLINK,
    ARRAY_SUBLINK,
    CTE_SUBLINK                    /* 仅用于SubPlans中;for SubPlans only */
} SubLinkType;

SubLink
SubLink结构体


typedef struct SubLink
{
    Expr        xpr;
    SubLinkType subLinkType;    /* see above */
    int            subLinkId;        /* ID (1..n); 0 if not MULTIEXPR */
    Node       *testexpr;        /* outer-query test for ALL/ANY/ROWCOMPARE */
    List       *operName;        /* originally specified operator name */
    Node       *subselect;        /* subselect as Query* or raw parsetree */
    int            location;        /* token location, or -1 if unknown */
} SubLink;

MaterialState
Material状态

/* ----------------
 *     MaterialState information
 *
 *        materialize nodes are used to materialize the results
 *        of a subplan into a temporary file.
 *        materialize节点用于物化subplan的结果为临时文件。
 *
 *        ss.ss_ScanTupleSlot refers to output of underlying plan.
 *        ss.ss_ScanTupleSlot指向underlyling plan的输出(subplan)
 * ----------------
 */
typedef struct MaterialState
{
    ScanState    ss;                /* its first field is NodeTag */
    int            eflags;            /* 传递给tuplestore的capability标记;capability flags to pass to tuplestore */
    bool        eof_underlying; /* 已经到达underlying plan的末尾?reached end of underlying plan? */
    Tuplestorestate *tuplestorestate;
} MaterialState;

二、源码解读

ExecMaterial
执行物化操作。


/* ----------------------------------------------------------------
 *        ExecMaterial
 *
 *        As long as we are at the end of the data collected in the tuplestore,
 *        we collect one new row from the subplan on each call, and stash it
 *        aside in the tuplestore before returning it.  The tuplestore is
 *        only read if we are asked to scan backwards, rescan, or mark/restore.
 *      只要在tuplestore中数据收集结束时,就会在每次调用时从subplan中收集一条新行,
 *      并在返回之前将其保存在tuplestore中。
 *      只要在往后扫描、重新扫描或标记/恢复时tuplestore才会读取。
 *
 * ----------------------------------------------------------------
 */
static TupleTableSlot *            /* 从subplan中返回的结果;result tuple from subplan */
ExecMaterial(PlanState *pstate)
{
    MaterialState *node = castNode(MaterialState, pstate);//物化节点
    EState       *estate;//运行期状态
    ScanDirection dir;//扫描方向
    bool        forward;//是否往前扫描
    Tuplestorestate *tuplestorestate;//Tuplestorestate结构体指针
    bool        eof_tuplestore;//是否完成?
    TupleTableSlot *slot;//存储元组的slot
    CHECK_FOR_INTERRUPTS();
    /*
     * get state info from node
     * 从物化节点中获取相关信息
     */
    estate = node->ss.ps.state;
    dir = estate->es_direction;//方向
    forward = ScanDirectionIsForward(dir);//是否往前扫描
    tuplestorestate = node->tuplestorestate;
    /*
     * If first time through, and we need a tuplestore, initialize it.
     * 第一次,需要tuplestore并初始化
     */
    if (tuplestorestate == NULL && node->eflags != 0)
    {
        tuplestorestate = tuplestore_begin_heap(true, false, work_mem);
        tuplestore_set_eflags(tuplestorestate, node->eflags);
        if (node->eflags & EXEC_FLAG_MARK)
        {
            /*
             * Allocate a second read pointer to serve as the mark. We know it
             * must have index 1, so needn't store that.
             * 分配用于mark的读指针
             */
            int            ptrno PG_USED_FOR_ASSERTS_ONLY;
            ptrno = tuplestore_alloc_read_pointer(tuplestorestate,
                                                  node->eflags);
            Assert(ptrno == 1);
        }
        node->tuplestorestate = tuplestorestate;
    }
    /*
     * If we are not at the end of the tuplestore, or are going backwards, try
     * to fetch a tuple from tuplestore.
     * 如果不在tuplestore的末尾或者正在往后扫描,尝试从tuplestore中提取一个元组
     */
    eof_tuplestore = (tuplestorestate == NULL) ||
        tuplestore_ateof(tuplestorestate);
    if (!forward && eof_tuplestore)
    {
        if (!node->eof_underlying)
        {
            /*
             * When reversing direction at tuplestore EOF, the first
             * gettupleslot call will fetch the last-added tuple; but we want
             * to return the one before that, if possible. So do an extra
             * fetch.
             * 在EOF处反转方向,第一次的gettupleslot调用会提取最后添加的元组;
             * 但如可能,希望返回在此之前的元组,执行额外的提取操作。
             */
            if (!tuplestore_advance(tuplestorestate, forward))
                return NULL;    /* the tuplestore must be empty */
        }
        eof_tuplestore = false;
    }
    /*
     * If we can fetch another tuple from the tuplestore, return it.
     * 如能从tuplestore中提取另外一个tuple,返回
     */
    slot = node->ss.ps.ps_ResultTupleSlot;
    if (!eof_tuplestore)
    {
        if (tuplestore_gettupleslot(tuplestorestate, forward, false, slot))
            return slot;
        if (forward)
            eof_tuplestore = true;
    }
    /*
     * If necessary, try to fetch another row from the subplan.
     * 如需要(tuplestore末尾),尝试从subplan中提取另外一行
     *
     * Note: the eof_underlying state variable exists to short-circuit further
     * subplan calls.  It's not optional, unfortunately, because some plan
     * node types are not robust about being called again when they've already
     * returned NULL.
     */
    if (eof_tuplestore && !node->eof_underlying)
    {
        PlanState  *outerNode;
        TupleTableSlot *outerslot;
        /*
         * We can only get here with forward==true, so no need to worry about
         * which direction the subplan will go.
         */
        outerNode = outerPlanState(node);
        outerslot = ExecProcNode(outerNode);
        if (TupIsNull(outerslot))
        {
            node->eof_underlying = true;
            return NULL;
        }
        /*
         * Append a copy of the returned tuple to tuplestore.  NOTE: because
         * the tuplestore is certainly in EOF state, its read position will
         * move forward over the added tuple.  This is what we want.
         * 追加返回的元组到tuplestore中。
         * 注意:因为tuplestore当前处于EOF状态,读取的位置会前移至已添加的tuple前面,这是我们希望看到的。
         */
        if (tuplestorestate)
            tuplestore_puttupleslot(tuplestorestate, outerslot);
        ExecCopySlot(slot, outerslot);
        return slot;
    }
    /*
     * Nothing left ...
     */
    return ExecClearTuple(slot);
}

tuplestore_begin_heap
初始化tuplestore


/*
 * tuplestore_begin_heap
 *
 * Create a new tuplestore; other types of tuple stores (other than
 * "heap" tuple stores, for heap tuples) are possible, but not presently
 * implemented.
 * 创建新的tuplestore:目前仅实现了heap tuples。
 *
 * randomAccess: if true, both forward and backward accesses to the
 * tuple store are allowed.
 * randomAccess : 如为T,支持往前和往后访问。
 *
 * interXact: if true, the files used for on-disk storage persist beyond the
 * end of the current transaction.  NOTE: It's the caller's responsibility to
 * create such a tuplestore in a memory context and resource owner that will
 * also survive transaction boundaries, and to ensure the tuplestore is closed
 * when it's no longer wanted.
 * interXact : 如为T,磁盘上的存储文件在当前事务结束后也会一直保持。
 * 注意:调用者有责任在事务边界内存活的内存上下文和资源拥有者中创建tuplestore并确保不再使用时销毁tuplestore。
 *
 * maxKBytes: how much data to store in memory (any data beyond this
 * amount is paged to disk).  When in doubt, use work_mem.
 * maxKBytes:有多少数据需要存储到内存中(超长此大小的会分页到磁盘上)。
 * 如存在问题,则使用work_mem。
 */
Tuplestorestate *
tuplestore_begin_heap(bool randomAccess, bool interXact, int maxKBytes)
{
    Tuplestorestate *state;
    int            eflags;
    /*
     * This interpretation of the meaning of randomAccess is compatible with
     * the pre-8.3 behavior of tuplestores.
     */
    eflags = randomAccess ?
        (EXEC_FLAG_BACKWARD | EXEC_FLAG_REWIND) :
        (EXEC_FLAG_REWIND);
    state = tuplestore_begin_common(eflags, interXact, maxKBytes);
    state->copytup = copytup_heap;
    state->writetup = writetup_heap;
    state->readtup = readtup_heap;
    return state;
}
/*
 *        tuplestore_begin_xxx
 *
 * Initialize for a tuple store operation.
 * 初始化tuplestore
 */
static Tuplestorestate *
tuplestore_begin_common(int eflags, bool interXact, int maxKBytes)
{
    Tuplestorestate *state;
    state = (Tuplestorestate *) palloc0(sizeof(Tuplestorestate));
    state->status = TSS_INMEM;
    state->eflags = eflags;
    state->interXact = interXact;
    state->truncated = false;
    state->allowedMem = maxKBytes * 1024L;
    state->availMem = state->allowedMem;
    state->myfile = NULL;
    state->context = CurrentMemoryContext;
    state->resowner = CurrentResourceOwner;
    state->memtupdeleted = 0;
    state->memtupcount = 0;
    state->tuples = 0;
    /*
     * Initial size of array must be more than ALLOCSET_SEPARATE_THRESHOLD;
     * see comments in grow_memtuples().
     */
    state->memtupsize = Max(16384 / sizeof(void *),
                            ALLOCSET_SEPARATE_THRESHOLD / sizeof(void *) + 1);
    state->growmemtuples = true;
    state->memtuples = (void **) palloc(state->memtupsize * sizeof(void *));
    USEMEM(state, GetMemoryChunkSpace(state->memtuples));
    state->activeptr = 0;
    state->readptrcount = 1;
    state->readptrsize = 8;        /* arbitrary */
    state->readptrs = (TSReadPointer *)
        palloc(state->readptrsize * sizeof(TSReadPointer));
    state->readptrs[0].eflags = eflags;
    state->readptrs[0].eof_reached = false;
    state->readptrs[0].current = 0;
    return state;
}

tuplestore_advance
从tuplestore前进一行


/*
 * tuplestore_advance - exported function to adjust position without fetching
 *
 * We could optimize this case to avoid palloc/pfree overhead, but for the
 * moment it doesn't seem worthwhile.
 */
bool
tuplestore_advance(Tuplestorestate *state, bool forward)
{
    void       *tuple;
    bool        should_free;
    tuple = tuplestore_gettuple(state, forward, &should_free);
    if (tuple)
    {
        if (should_free)
            pfree(tuple);
        return true;
    }
    else
    {
        return false;
    }
}

tuplestore_gettupleslot
获取slot


/*
 * tuplestore_gettupleslot - exported function to fetch a MinimalTuple
 * 提取MinimalTuple
 *
 * If successful, put tuple in slot and return true; else, clear the slot
 * and return false.
 * 如成功,则把元组塞进slot中并返回T,否则清空slot返回F
 *
 * If copy is true, the slot receives a copied tuple (allocated in current
 * memory context) that will stay valid regardless of future manipulations of
 * the tuplestore's state.  If copy is false, the slot may just receive a
 * pointer to a tuple held within the tuplestore.  The latter is more
 * efficient but the slot contents may be corrupted if additional writes to
 * the tuplestore occur.  (If using tuplestore_trim, see comments therein.)
 * 如copy为T,则slot会接收拷贝之后的元组,独立于tuplestore的状态.
 * 如copy为F,则slot可能接收到tuplestore中的元组指针.
 */
bool
tuplestore_gettupleslot(Tuplestorestate *state, bool forward,
                        bool copy, TupleTableSlot *slot)
{
    MinimalTuple tuple;
    bool        should_free;
    tuple = (MinimalTuple) tuplestore_gettuple(state, forward, &should_free);
    if (tuple)
    {
        if (copy && !should_free)
        {
            tuple = heap_copy_minimal_tuple(tuple);
            should_free = true;
        }
        ExecStoreMinimalTuple(tuple, slot, should_free);
        return true;
    }
    else
    {
        ExecClearTuple(slot);
        return false;
    }
}

tuplestore_gettuple
返回下一个元组


/*
 * Fetch the next tuple in either forward or back direction.
 * Returns NULL if no more tuples.  If should_free is set, the
 * caller must pfree the returned tuple when done with it.
 * 往前/后返回下一个元组。
 * 如无更多元组,返回NULL。如should_free有值,调用者必须在处理完毕后释放返回的元组
 *
 * Backward scan is only allowed if randomAccess was set true or
 * EXEC_FLAG_BACKWARD was specified to tuplestore_set_eflags().
 * 在randomAccess设置为T或者指定EXEC_FLAG_BACKWARD时才允许。
 */
static void *
tuplestore_gettuple(Tuplestorestate *state, bool forward,
                    bool *should_free)
{
    TSReadPointer *readptr = &state->readptrs[state->activeptr];//读取指针
    unsigned int tuplen;
    void       *tup;
    Assert(forward || (readptr->eflags & EXEC_FLAG_BACKWARD));
    switch (state->status)
    {
        case TSS_INMEM://内存中
            *should_free = false;
            if (forward)
            {
                if (readptr->eof_reached)
                    return NULL;
                if (readptr->current < state->memtupcount)
                {
                    /* We have another tuple, so return it */
                    return state->memtuples[readptr->current++];
                }
                readptr->eof_reached = true;
                return NULL;
            }
            else
            {
                /*
                 * if all tuples are fetched already then we return last
                 * tuple, else tuple before last returned.
                 */
                if (readptr->eof_reached)
                {
                    readptr->current = state->memtupcount;
                    readptr->eof_reached = false;
                }
                else
                {
                    if (readptr->current <= state->memtupdeleted)
                    {
                        Assert(!state->truncated);
                        return NULL;
                    }
                    readptr->current--; /* last returned tuple */
                }
                if (readptr->current <= state->memtupdeleted)
                {
                    Assert(!state->truncated);
                    return NULL;
                }
                return state->memtuples[readptr->current - 1];
            }
            break;
        case TSS_WRITEFILE://写文件
            /* Skip state change if we'll just return NULL */
            //如只需要返回NULL则跳过状态变换
            if (readptr->eof_reached && forward)
                return NULL;
            /*
             * Switch from writing to reading.
             * 从写切换至读
             */
            BufFileTell(state->myfile,
                        &state->writepos_file, &state->writepos_offset);
            if (!readptr->eof_reached)
                if (BufFileSeek(state->myfile,
                                readptr->file, readptr->offset,
                                SEEK_SET) != 0)
                    ereport(ERROR,
                            (errcode_for_file_access(),
                             errmsg("could not seek in tuplestore temporary file: %m")));
            state->status = TSS_READFILE;
            /* FALLTHROUGH */
            //进入读文件状态的处理逻辑
        case TSS_READFILE:
            *should_free = true;
            if (forward)
            {
                //往前读
                if ((tuplen = getlen(state, true)) != 0)
                {
                    tup = READTUP(state, tuplen);
                    return tup;
                }
                else
                {
                    readptr->eof_reached = true;
                    return NULL;
                }
            }
            /*
             * Backward.
             * 往后读
             *
             * if all tuples are fetched already then we return last tuple,
             * else tuple before last returned.
             * 如果所有元组时已提取,则返回最后一个元组,否则返回先前最后返回的元组
             *
             * Back up to fetch previously-returned tuple's ending length
             * word. If seek fails, assume we are at start of file.
             * 往回向上提取先前已返回的元组结束长度字,如检索失败,假定处于文件的开始位置.
             */
            if (BufFileSeek(state->myfile, 0, -(long) sizeof(unsigned int),
                            SEEK_CUR) != 0)
            {
                /* even a failed backwards fetch gets you out of eof state */
                readptr->eof_reached = false;
                Assert(!state->truncated);
                return NULL;
            }
            tuplen = getlen(state, false);
            if (readptr->eof_reached)
            {
                readptr->eof_reached = false;
                /* We will return the tuple returned before returning NULL */
                //在返回NULL前返回先前已返回的元组
            }
            else
            {
                /*
                 * Back up to get ending length word of tuple before it.
                 * 获取结束长度字
                 */
                if (BufFileSeek(state->myfile, 0,
                                -(long) (tuplen + 2 * sizeof(unsigned int)),
                                SEEK_CUR) != 0)
                {
                    /*
                     * If that fails, presumably the prev tuple is the first
                     * in the file.  Back up so that it becomes next to read
                     * in forward direction (not obviously right, but that is
                     * what in-memory case does).
                     */
                    if (BufFileSeek(state->myfile, 0,
                                    -(long) (tuplen + sizeof(unsigned int)),
                                    SEEK_CUR) != 0)
                        ereport(ERROR,
                                (errcode_for_file_access(),
                                 errmsg("could not seek in tuplestore temporary file: %m")));
                    Assert(!state->truncated);
                    return NULL;
                }
                tuplen = getlen(state, false);
            }
            /*
             * Now we have the length of the prior tuple, back up and read it.
             * Note: READTUP expects we are positioned after the initial
             * length word of the tuple, so back up to that point.
             * 已获得优先元组的长度,读取之.
             */
            if (BufFileSeek(state->myfile, 0,
                            -(long) tuplen,
                            SEEK_CUR) != 0)
                ereport(ERROR,
                        (errcode_for_file_access(),
                         errmsg("could not seek in tuplestore temporary file: %m")));
            tup = READTUP(state, tuplen);
            return tup;
        default:
            elog(ERROR, "invalid tuplestore state");
            return NULL;        /* keep compiler quiet */
    }
}

三、跟踪分析

执行SQL:

[pg12@localhost ~]$ psql -d testdb
Timing is on.
Expanded display is used automatically.
psql (12.0)
Type "help" for help.
[local]:5432 pg12@testdb=# 
[local]:5432 pg12@testdb=# select * from tbl;
 id | value 
----+-------
  1 |     2
(1 row)
Time: 2.678 ms
[local]:5432 pg12@testdb=# select count(*) from t_big_null;
  count   
----------
 10000001
(1 row)
Time: 679.972 ms
[local]:5432 pg12@testdb=# analyze tbl;
ANALYZE
Time: 64.442 ms
[local]:5432 pg12@testdb=# analyze t_big_null;
ANALYZE
Time: 434.702 ms
[local]:5432 pg12@testdb=# 
[local]:5432 pg12@testdb=# select pg_backend_pid();
 pg_backend_pid 
----------------
          18758
(1 row)
Time: 1.990 ms
[local]:5432 pg12@testdb=# select * from tbl a where a.id not in (select b.id from t_big_null b);

启动gdb跟踪

(gdb) b ExecMaterial
Breakpoint 1 at 0x720edb: file nodeMaterial.c, line 41.
(gdb) c
Continuing.
Breakpoint 1, ExecMaterial (pstate=0x1230128) at nodeMaterial.c:41
41        MaterialState *node = castNode(MaterialState, pstate);
(gdb)

单步调试

(gdb) n
49        CHECK_FOR_INTERRUPTS();
(gdb) 
54        estate = node->ss.ps.state;
(gdb) 
55        dir = estate->es_direction;
(gdb) 
56        forward = ScanDirectionIsForward(dir);
(gdb) 
57        tuplestorestate = node->tuplestorestate;
(gdb) 
62        if (tuplestorestate == NULL && node->eflags != 0)
(gdb) 
64            tuplestorestate = tuplestore_begin_heap(true, false, work_mem);
(gdb) 
65            tuplestore_set_eflags(tuplestorestate, node->eflags);
(gdb) 
66            if (node->eflags & EXEC_FLAG_MARK)
(gdb) 
78            node->tuplestorestate = tuplestorestate;
(gdb) 
85        eof_tuplestore = (tuplestorestate == NULL) ||
(gdb) 
86            tuplestore_ateof(tuplestorestate);
(gdb) 
85        eof_tuplestore = (tuplestorestate == NULL) ||
(gdb) 
88        if (!forward && eof_tuplestore)
(gdb) p eof_tuplestore
$1 = false
(gdb)

进入tuplestore_gettupleslot

(gdb) n
107        slot = node->ss.ps.ps_ResultTupleSlot;
(gdb) 
108        if (!eof_tuplestore)
(gdb) 
110            if (tuplestore_gettupleslot(tuplestorestate, forward, false, slot))
(gdb) step
tuplestore_gettupleslot (state=0x3069c18, forward=true, copy=false, slot=0x30687a8)
    at tuplestore.c:1084
1084        tuple = (MinimalTuple) tuplestore_gettuple(state, forward, &should_free);
(gdb)

进入tuplestore_gettuple

(gdb) step
tuplestore_gettuple (state=0x3069c18, forward=true, should_free=0x7ffd18474ff7)
    at tuplestore.c:906
906        TSReadPointer *readptr = &state->readptrs[state->activeptr];
(gdb)

tuplestore_gettuple->文件读写指针信息

(gdb) n
910        Assert(forward || (readptr->eflags & EXEC_FLAG_BACKWARD));
(gdb) p *readptr
$2 = {eflags = 2, eof_reached = false, current = 0, file = 2139062143, 
  offset = 9187201950435737471}

tuplestore_gettuple->当前状态为TSS_INMEM

(gdb) n
912        switch (state->status)
(gdb) p *state
$3 = {status = TSS_INMEM, eflags = 2, backward = false, interXact = false, 
  truncated = false, availMem = 4177896, allowedMem = 4194304, tuples = 0, myfile = 0x0, 
  context = 0x3067da0, resowner = 0x2fa62c8, copytup = 0xaba7bd , 
  writetup = 0xaba811 , readtup = 0xaba9d9 , 
  memtuples = 0x3051e90, memtupdeleted = 0, memtupcount = 0, memtupsize = 2048, 
  growmemtuples = true, readptrs = 0x3077f70, activeptr = 0, readptrcount = 1, 
  readptrsize = 8, writepos_file = 0, writepos_offset = 0}
(gdb) p state->status
$4 = TSS_INMEM
(gdb)

tuplestore_gettuple->返回NULL

(gdb) n
915                *should_free = false;
(gdb) n
916                if (forward)
(gdb) 
918                    if (readptr->eof_reached)
(gdb) 
920                    if (readptr->current < state->memtupcount)
(gdb) p readptr->current
$5 = 0
(gdb) p state->memtupcount
$6 = 0
(gdb) n
925                    readptr->eof_reached = true;
(gdb) 
926                    return NULL;
(gdb) 
1062    }
(gdb)

tuplestore_gettupleslot->返回false

(gdb) n
tuplestore_gettupleslot (state=0x3069c18, forward=true, copy=false, slot=0x30687a8)
    at tuplestore.c:1086
1086        if (tuple)
(gdb) 
1098            ExecClearTuple(slot);
(gdb) 
1099            return false;
(gdb)

回到ExecMaterial

(gdb) n
1101    }
(gdb) 
ExecMaterial (pstate=0x3068158) at nodeMaterial.c:112
112            if (forward)
(gdb) 
113                eof_tuplestore = true;
(gdb)

从outerPlan中获取一行(即从t_big_null中获取一行)

(gdb) n
124        if (eof_tuplestore && !node->eof_underlying)
(gdb) p node->eof_underlying
$7 = false
(gdb) n
133            outerNode = outerPlanState(node);
(gdb) 
###
#define innerPlanState(node)        (((PlanState *)(node))->righttree)
#define outerPlanState(node)        (((PlanState *)(node))->lefttree)
###
134            outerslot = ExecProcNode(outerNode);
(gdb) p outerNode
$8 = (PlanState *) 0x3068270
(gdb) p *outerNode
$9 = {type = T_SeqScanState, plan = 0x3037628, state = 0x3067eb8, 
  ExecProcNode = 0x6f802a , ExecProcNodeReal = 0x72b904 , 
  instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0, qual = 0x0, 
  lefttree = 0x0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0, 
  ps_ResultTupleDesc = 0x3068578, ps_ResultTupleSlot = 0x0, ps_ExprContext = 0x3068388, 
  ps_ProjInfo = 0x0, scandesc = 0x7fab449cae98, 
  scanops = 0xc3e780 , outerops = 0x0, innerops = 0x0, 
  resultops = 0xc3e780 , scanopsfixed = true, 
  outeropsfixed = false, inneropsfixed = false, resultopsfixed = true, scanopsset = true, 
  outeropsset = false, inneropsset = false, resultopsset = true}
(gdb) p *outerNode->state
$10 = {type = T_EState, es_direction = ForwardScanDirection, es_snapshot = 0x2f9cd10, 
  es_crosscheck_snapshot = 0x0, es_range_table = 0x3042130, 
  es_range_table_array = 0x3068108, es_range_table_size = 2, es_relations = 0x3068130, 
  es_rowmarks = 0x0, es_plannedstmt = 0x3042438, 
  es_sourceText = 0x2f74d88 "select * from tbl a where a.id not in (select b.id from t_big_null b);", es_junkFilter = 0x0, es_output_cid = 0, es_result_relations = 0x0, 
  es_num_result_relations = 0, es_result_relation_info = 0x0, 
  es_root_result_relations = 0x0, es_num_root_result_relations = 0, 
  es_partition_directory = 0x0, es_tuple_routing_result_relations = 0x0, 
  es_trig_target_relations = 0x0, es_param_list_info = 0x0, 
  es_param_exec_vals = 0x30680d0, es_queryEnv = 0x0, es_query_cxt = 0x3067da0, 
  es_tupleTable = 0x3068540, es_processed = 0, es_top_eflags = 16, es_instrument = 0, 
  es_finished = false, es_exprcontexts = 0x3068448, es_subplanstates = 0x3068950, 
  es_auxmodifytables = 0x0, es_per_tuple_exprcontext = 0x0, es_epq_active = 0x0, 
  es_use_parallel_mode = false, es_query_dsa = 0x0, es_jit_flags = 25, es_jit = 0x0, 
  es_jit_worker_instr = 0x0}
(gdb) p ((PlanState *)node)->righttree
$21 = (struct PlanState *) 0x0
(gdb)

回过头来看执行计划,Materialize Node的lefttree是Seq Scan on public.t_big_null b,righttree为NULL。

[local]:5432 pg12@testdb=# explain verbose select * from tbl a where a.id not in (select b.id from t_big_null b);
                                         QUERY PLAN                                        
-------------------------------------------------------------------------------------------
-
 Seq Scan on public.tbl a  (cost=0.00..129156.33 rows=1 width=8)
   Output: a.id, a.value
   Filter: (NOT (SubPlan 1))
   SubPlan 1
     ->  Materialize  (cost=0.00..233310.68 rows=9999979 width=4)
           Output: b.id
           ->  Seq Scan on public.t_big_null b  (cost=0.00..144247.79 rows=9999979 width=4)
                 Output: b.id
(8 rows)
Time: 7.681 ms

获取outerslot

(gdb) n
135            if (TupIsNull(outerslot))
(gdb) p *outerslot
$16 = {type = T_TupleTableSlot, tts_flags = 16, tts_nvalid = 0, 
  tts_ops = 0xc3e780 , tts_tupleDescriptor = 0x7fab449cae98, 
  tts_values = 0x30684f0, tts_isnull = 0x30684f8, tts_mcxt = 0x3067da0, tts_tid = {
    ip_blkid = {bi_hi = 0, bi_lo = 0}, ip_posid = 1}, tts_tableOid = 49155}
(gdb) p *outerslot->tts_values
$17 = 0
(gdb) p outerslot->tts_values[1]
$18 = 0
(gdb) p outerslot->tts_values[0]
$19 = 0
(gdb) p *outerslot->tts_tupleDescriptor
$20 = {natts = 1, tdtypeid = 49157, tdtypmod = -1, tdrefcount = 2, constr = 0x0, 
  attrs = 0x7fab449caeb0}

获取outerslot后,put到tuplestore中

(gdb) p *node
$22 = {ss = {ps = {type = T_MaterialState, plan = 0x3040a60, state = 0x3067eb8, 
      ExecProcNode = 0x720ecf , ExecProcNodeReal = 0x720ecf , 
      instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0, qual = 0x0, 
      lefttree = 0x3068270, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, 
      chgParam = 0x0, ps_ResultTupleDesc = 0x3068690, ps_ResultTupleSlot = 0x30687a8, 
      ps_ExprContext = 0x0, ps_ProjInfo = 0x0, scandesc = 0x3068578, 
      scanops = 0xc3e720 , outerops = 0x0, innerops = 0x0, 
      resultops = 0xc3e720 , scanopsfixed = true, 
      outeropsfixed = false, inneropsfixed = false, resultopsfixed = true, 
      scanopsset = true, outeropsset = false, inneropsset = false, resultopsset = true}, 
    ss_currentRelation = 0x0, ss_currentScanDesc = 0x0, ss_ScanTupleSlot = 0x3068868}, 
  eflags = 2, eof_underlying = false, tuplestorestate = 0x3069c18}
(gdb) n
146            if (tuplestorestate)
(gdb) 
147                tuplestore_puttupleslot(tuplestorestate, outerslot);
(gdb) p outerslot->tts_values[0]
$23 = 0
(gdb) n
149            ExecCopySlot(slot, outerslot);
(gdb) p outerslot->tts_values[0]
$24 = 0
(gdb) n
150            return slot;
(gdb) p outerslot->tts_values[0]
$25 = 0
(gdb) p slot->tts_values[0]
$26 = 0
(gdb) n
157    }
(gdb)

继续“物化”

(gdb) n
ExecProcNodeFirst (node=0x3068158) at execProcnode.c:446
446    }
(gdb) c
Continuing.
Breakpoint 1, ExecMaterial (pstate=0x3068158) at nodeMaterial.c:41
41        MaterialState *node = castNode(MaterialState, pstate);
(gdb) n
49        CHECK_FOR_INTERRUPTS();
(gdb) 
54        estate = node->ss.ps.state;
(gdb) 
55        dir = estate->es_direction;
(gdb) 
56        forward = ScanDirectionIsForward(dir);
(gdb) 
57        tuplestorestate = node->tuplestorestate;
(gdb) 
62        if (tuplestorestate == NULL && node->eflags != 0)
(gdb) 
85        eof_tuplestore = (tuplestorestate == NULL) ||
(gdb) 
86            tuplestore_ateof(tuplestorestate);
(gdb) 
85        eof_tuplestore = (tuplestorestate == NULL) ||
(gdb) 
88        if (!forward && eof_tuplestore)
(gdb) 
107        slot = node->ss.ps.ps_ResultTupleSlot;
(gdb) 
108        if (!eof_tuplestore)
(gdb) 
124        if (eof_tuplestore && !node->eof_underlying)
(gdb) 
133            outerNode = outerPlanState(node);
(gdb) p eof_tuplestore
$27 = true
(gdb) n
134            outerslot = ExecProcNode(outerNode);
(gdb) 
135            if (TupIsNull(outerslot))
(gdb) 
146            if (tuplestorestate)
(gdb) 
147                tuplestore_puttupleslot(tuplestorestate, outerslot);
(gdb) 
149            ExecCopySlot(slot, outerslot);
(gdb) 
150            return slot;
(gdb) p slot->tts_values[0]
$28 = 2
(gdb)

第一次执行时间较久,第二次相对快2个数量级,需要继续研究。

[local]:5432 pg12@testdb=# select * from tbl a where a.id not in (select b.id from t_big_null b);
 id | value 
----+-------
(0 rows)
Time: 3633462.666 ms (01:00:33.463) --> 包括了debug的时间,实际时间是5s左右
[local]:5432 pg12@testdb=# 
[local]:5432 pg12@testdb=# select * from tbl a where a.id not in (select b.id from t_big_null b);
 id | value 
----+-------
(0 rows)
Time: 6.480 ms --> 第2+次就快很多
[local]:5432 pg12@testdb=#

DONE

四、参考资料

N/A


分享标题:PostgreSQL源码解读(232)-查询#125(NOTIN实现#3)
文章链接:http://cqcxhl.cn/article/gcesed.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP