重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍“Java数据流和函数式编程如何实现”,在日常操作中,相信很多人在Java数据流和函数式编程如何实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java数据流和函数式编程如何实现”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联公司-专业网站定制、快速模板网站建设、高性价比余姚网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式余姚网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖余姚地区。费用合理售后完善,十多年实体公司更值得信赖。
流 API 是在数据序列中迭代元素的简洁而高级的方法。包 java.util.stream
和 java.util.function
包含了用于流 API 和相关函数式编程构造的新库。当然,代码示例胜过千言万语。
下面的代码段用大约 2,000 个随机整数值填充了一个 List
:
Random rand = new Random2();Listlist = new ArrayList (); // 空 listfor (int i = 0; i < 2048; i++) list.add(rand.nextInt()); // 填充它
另外用一个 for
循环可用于遍历填充列表,以将偶数值收集到另一个列表中。
流 API 提供了一种更简洁的方法来执行此操作:
Listevens = list .stream() // 流化 list .filter(n -> (n & 0x1) == 0) // 过滤出奇数值 .collect(Collectors.toList()); // 收集偶数值
这个例子有三个来自流 API 的函数:
stream
函数可以将集合转换为流,而流是一个每次可访问一个值的传送带。流化是惰性的(因此也是高效的),因为值是根据需要产生的,而不是一次性产生的。
filter
函数确定哪些流的值(如果有的话)通过了处理管道中的下一个阶段,即 collect
阶段。filter
函数是
,因为它的参数是一个函数 —— 在这个例子中是一个 lambda 表达式,它是一个未命名的函数,并且是 Java 新的函数式编程结构的核心。
lambda 语法与传统的 Java 完全不同:
n -> (n & 0x1) == 0
箭头(一个减号后面紧跟着一个大于号)将左边的参数列表与右边的函数体分隔开。参数 n
虽未明确类型,但也可以明确。在任何情况下,编译器都会发现 n
是个 Integer
。如果有多个参数,这些参数将被括在括号中,并用逗号分隔。
在本例中,函数体检查一个整数的最低位(最右)是否为零,这用来表示偶数。过滤器应返回一个布尔值。尽管可以,但该函数的主体中没有显式的 return
。如果主体没有显式的 return
,则主体的最后一个表达式即是返回值。在这个例子中,主体按照 lambda 编程的思想编写,由一个简单的布尔表达式 (n & 0x1) == 0
组成。
collect
函数将偶数值收集到引用为 evens
的列表中。如下例所示,collect
函数是线程安全的,因此,即使在多个线程之间共享了过滤操作,该函数也可以正常工作。
在生产环境中,数据流的源可能是文件或网络连接。为了学习流 API, Java 提供了诸如 IntStream
这样的类型,它可以用各种类型的元素生成流。这里有一个 IntStream
的例子:
IntStream // 整型流 .range(1, 2048) // 生成此范围内的整型流 .parallel() // 为多个线程分区数据 .filter(i -> ((i & 0x1) > 0)) // 奇偶校验 - 只允许奇数通过 .forEach(System.out::println); // 打印每个值
IntStream
类型包括一个 range
函数,该函数在指定的范围内生成一个整数值流,在本例中,以 1 为增量,从 1 递增到 2048。parallel
函数自动划分该工作到多个线程中,在各个线程中进行过滤和打印。(线程数通常与主机系统上的 CPU 数量匹配。)函数 forEach
参数是一个方法引用,在本例中是对封装在 System.out
中的 println
方法的引用,方法输出类型为 PrintStream
。方法和构造器引用的语法将在稍后讨论。
由于具有多线程,因此整数值整体上以任意顺序打印,但在给定线程中是按顺序打印的。例如,如果线程 T1 打印 409 和 411,那么 T1 将按照顺序 409-411 打印,但是其它某个线程可能会预先打印 2045。parallel
调用后面的线程是并发执行的,因此它们的输出顺序是不确定的。
map/reduce 模式在处理大型数据集方面变得很流行。一个 map/reduce 宏操作由两个微操作构成。首先,将数据分散()到各个工作程序中,然后将单独的结果收集在一起 —— 也可能收集统计起来成为一个值,即。归约可以采用不同的形式,如以下示例所示。
下面 Number
类的实例用 EVEN
或 ODD
表示有奇偶校验的整数值:
public class Number { enum Parity { EVEN, ODD } private int value; public Number(int n) { setValue(n); } public void setValue(int value) { this.value = value; } public int getValue() { return this.value; } public Parity getParity() { return ((value & 0x1) == 0) ? Parity.EVEN : Parity.ODD; } public void dump() { System.out.format("Value: %2d (parity: %s)\n", getValue(), (getParity() == Parity.ODD ? "odd" : "even")); }}
下面的代码演示了用 Number
流进行 map/reduce 的情形,从而表明流 API 不仅可以处理 int
和 float
等基本类型,还可以处理程序员自定义的类类型。
在下面的代码段中,使用了 parallelStream
而不是 stream
函数对随机整数值列表进行流化处理。与前面介绍的 parallel
函数一样,parallelStream
变体也可以自动执行多线程。
final int howMany = 200;Random r = new Random();Number[] nums = new Number[howMany];for (int i = 0; i < howMany; i++) nums[i] = new Number(r.nextInt(100));ListlistOfNums = Arrays.asList(nums); // 将数组转化为 list Integer sum4All = listOfNums .parallelStream() // 自动执行多线程 .mapToInt(Number::getValue) // 使用方法引用,而不是 lambda .sum(); // 将流值计算出和值System.out.println("The sum of the randomly generated values is: " + sum4All);
高阶的 mapToInt
函数可以接受一个 lambda 作为参数,但在本例中,它接受一个方法引用,即 Number::getValue
。getValue
方法不需要参数,它返回给定的 Number
实例的 int
值。语法并不复杂:类名 Number
后跟一个双冒号和方法名。回想一下先前的例子 System.out::println
,它在 System
类中的 static
属性 out
后面有一个双冒号。
方法引用 Number::getValue
可以用下面的 lambda 表达式替换。参数 n
是流中的 Number
实例中的之一:
mapToInt(n -> n.getValue())
通常,lambda 表达式和方法引用是可互换的:如果像 mapToInt
这样的高阶函数可以采用一种形式作为参数,那么这个函数也可以采用另一种形式。这两个函数式编程结构具有相同的目的 —— 对作为参数传入的数据执行一些自定义操作。在两者之间进行选择通常是为了方便。例如,lambda 可以在没有封装类的情况下编写,而方法则不能。我的习惯是使用 lambda,除非已经有了适当的封装方法。
当前示例末尾的 sum
函数通过结合来自 parallelStream
线程的部分和,以线程安全的方式进行归约。但是,程序员有责任确保在 parallelStream
调用引发的多线程过程中,程序员自己的函数调用(在本例中为 getValue
)是线程安全的。
最后一点值得强调。lambda 语法鼓励编写,即函数的返回值仅取决于传入的参数(如果有);纯函数没有副作用,例如更新一个类中的 static
字段。因此,纯函数是线程安全的,并且如果传递给高阶函数的函数参数(例如 filter
和 map
)是纯函数,则流 API 效果最佳。
对于更细粒度的控制,有另一个流 API 函数,名为 reduce
,可用于对 Number
流中的值求和:
Integer sum4AllHarder = listOfNums .parallelStream() // 多线程 .map(Number::getValue) // 每个 Number 的值 .reduce(0, (sofar, next) -> sofar + next); // 求和
此版本的 reduce
函数带有两个参数,第二个参数是一个函数:
第一个参数(在这种情况下为零)是特征值,该值用作求和操作的初始值,并且在求和过程中流结束时用作默认值。
第二个参数是累加器,在本例中,这个 lambda 表达式有两个参数:第一个参数(sofar
)是正在运行的和,第二个参数(next
)是来自流的下一个值。运行的和以及下一个值相加,然后更新累加器。请记住,由于开始时调用了 parallelStream
,因此 map
和 reduce
函数现在都在多线程上下文中执行。
在到目前为止的示例中,流值被收集,然后被规约,但是,通常情况下,流 API 中的 Collectors
可以累积值,而不需要将它们规约到单个值。正如下一个代码段所示,收集活动可以生成任意丰富的数据结构。该示例使用与前面示例相同的 listOfNums
:
Map> numMap = listOfNums .parallelStream() .collect(Collectors.groupingBy(Number::getParity)); List evens = numMap.get(Number.Parity.EVEN);List odds = numMap.get(Number.Parity.ODD);
第一行中的 numMap
指的是一个 Map
,它的键是一个 Number
奇偶校验位(ODD
或 EVEN
),其值是一个具有指定奇偶校验位值的 Number
实例的 List
。同样,通过 parallelStream
调用进行多线程处理,然后 collect
调用(以线程安全的方式)将部分结果组装到 numMap
引用的 Map
中。然后,在 numMap
上调用 get
方法两次,一次获取 evens
,第二次获取 odds
。
实用函数 dumpList
再次使用来自流 API 的高阶 forEach
函数:
private void dumpList(String msg, Listlist) { System.out.println("\n" + msg); list.stream().forEach(n -> n.dump()); // 或者使用 forEach(Number::dump)}
这是示例运行中程序输出的一部分:
The sum of the randomly generated values is: 3322The sum again, using a different method: 3322 Evens: Value: 72 (parity: even)Value: 54 (parity: even)...Value: 92 (parity: even) Odds: Value: 35 (parity: odd)Value: 37 (parity: odd)...Value: 41 (parity: odd)
函数式结构(如方法引用和 lambda 表达式)非常适合在流 API 中使用。这些构造代表了 Java 中对高阶函数的主要简化。即使在糟糕的过去,Java 也通过 Method
和 Constructor
类型在技术上支持高阶函数,这些类型的实例可以作为参数传递给其它函数。由于其复杂性,这些类型在生产级 Java 中很少使用。例如,调用 Method
需要对象引用(如果方法是非静态的)或至少一个类标识符(如果方法是静态的)。然后,被调用的 Method
的参数作为对象实例传递给它,如果没有发生多态(那会出现另一种复杂性!),则可能需要显式向下转换。相比之下,lambda 和方法引用很容易作为参数传递给其它函数。
但是,新的函数式结构在流 API 之外具有其它用途。考虑一个 Java GUI 程序,该程序带有一个供用户按下的按钮,例如,按下以获取当前时间。按钮按下的事件处理程序可能编写如下:
JButton updateCurrentTime = new JButton("Update current time");updateCurrentTime.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent e) { currentTime.setText(new Date().toString()); }});
这个简短的代码段很难解释。关注第二行,其中方法 addActionListener
的参数开始如下:
new ActionListener() {
这似乎是错误的,因为 ActionListener
是一个抽象接口,而抽象类型不能通过调用 new
实例化。但是,事实证明,还有其它一些实例被实例化了:一个实现此接口的未命名内部类。如果上面的代码封装在名为 OldJava
的类中,则该未命名的内部类将被编译为 OldJava$1.class
。actionPerformed
方法在这个未命名的内部类中被重写。
现在考虑使用新的函数式结构进行这个令人耳目一新的更改:
updateCurrentTime.addActionListener(e -> currentTime.setText(new Date().toString()));
lambda 表达式中的参数 e
是一个 ActionEvent
实例,而 lambda 的主体是对按钮上的 setText
的简单调用。
到目前为止,使用的 lambda 已经写好了。但是,为了方便起见,我们可以像引用封装方法一样引用 lambda 表达式。以下一系列简短示例说明了这一点。
考虑以下接口定义:
@FunctionalInterface // 可选,通常省略interface BinaryIntOp { abstract int compute(int arg1, int arg2); // abstract 声明可以被删除}
注释 @FunctionalInterface
适用于声明唯一抽象方法的任何接口;在本例中,这个抽象接口是 compute
。一些标准接口,(例如具有唯一声明方法 run
的 Runnable
接口)同样符合这个要求。在此示例中,compute
是已声明的方法。该接口可用作引用声明中的目标类型:
BinaryIntOp div = (arg1, arg2) -> arg1 / arg2;div.compute(12, 3); // 4
包 java.util.function
提供各种函数式接口。以下是一些示例。
下面的代码段介绍了参数化的 Predicate
函数式接口。在此示例中,带有参数 String
的 Predicate
类型可以引用具有 String
参数的 lambda 表达式或诸如 isEmpty
之类的 String
方法。通常情况下,Predicate 是一个返回布尔值的函数。
Predicatepred = String::isEmpty; // String 方法的 predicate 声明String[] strings = {"one", "two", "", "three", "four"};Arrays.asList(strings) .stream() .filter(pred) // 过滤掉非空字符串 .forEach(System.out::println); // 只打印空字符串
在字符串长度为零的情况下,isEmpty
Predicate 判定结果为 true
。 因此,只有空字符串才能进入管道的 forEach
阶段。
下一段代码将演示如何将简单的 lambda 或方法引用组合成更丰富的 lambda 或方法引用。考虑这一系列对 IntUnaryOperator
类型的引用的赋值,它接受一个整型参数并返回一个整型值:
IntUnaryOperator doubled = n -> n * 2;IntUnaryOperator tripled = n -> n * 3;IntUnaryOperator squared = n -> n * n;
IntUnaryOperator
是一个 FunctionalInterface
,其唯一声明的方法为 applyAsInt
。现在可以单独使用或以各种组合形式使用这三个引用 doubled
、tripled
和 squared
:
int arg = 5;doubled.applyAsInt(arg); // 10tripled.applyAsInt(arg); // 15squared.applyAsInt(arg); // 25
以下是一些函数组合的样例:
int arg = 5;doubled.compose(squared).applyAsInt(arg); // 5 求 2 次方后乘 2:50tripled.compose(doubled).applyAsInt(arg); // 5 乘 2 后再乘 3:30doubled.andThen(squared).applyAsInt(arg); // 5 乘 2 后求 2 次方:100squared.andThen(tripled).applyAsInt(arg); // 5 求 2 次方后乘 3:75
函数组合可以直接使用 lambda 表达式实现,但是引用使代码更简洁。
构造器引用是另一种函数式编程构造,而这些引用在比 lambda 和方法引用更微妙的上下文中非常有用。再一次重申,代码示例似乎是最好的解释方式。
考虑这个 POJO 类:
public class BedRocker { // 基岩的居民 private String name; public BedRocker(String name) { this.name = name; } public String getName() { return this.name; } public void dump() { System.out.println(getName()); }}
该类只有一个构造函数,它需要一个 String
参数。给定一个名字数组,目标是生成一个 BedRocker
元素数组,每个名字代表一个元素。下面是使用了函数式结构的代码段:
String[] names = {"Fred", "Wilma", "Peebles", "Dino", "Baby Puss"}; Streambedrockers = Arrays.asList(names).stream().map(BedRocker::new);BedRocker[] arrayBR = bedrockers.toArray(BedRocker[]::new); Arrays.asList(arrayBR).stream().forEach(BedRocker::dump);
在较高的层次上,这个代码段将名字转换为 BedRocker
数组元素。具体来说,代码如下所示。Stream
接口(在包 java.util.stream
中)可以被参数化,而在本例中,生成了一个名为 bedrockers
的 BedRocker
流。
Arrays.asList
实用程序再次用于流化一个数组 names
,然后将流的每一项传递给 map
函数,该函数的参数现在是构造器引用 BedRocker::new
。这个构造器引用通过在每次调用时生成和初始化一个 BedRocker
实例来充当一个对象工厂。在第二行执行之后,名为 bedrockers
的流由五项 BedRocker
组成。
这个例子可以通过关注高阶 map
函数来进一步阐明。在通常情况下,一个映射将一个类型的值(例如,一个 int
)转换为另一个相同类型的值(例如,一个整数的后继):
map(n -> n + 1) // 将 n 映射到其后继
然而,在 BedRocker
这个例子中,转换更加戏剧化,因为一个类型的值(代表一个名字的 String
)被映射到一个不同类型的值,在这个例子中,就是一个 BedRocker
实例,这个字符串就是它的名字。转换是通过一个构造器调用来完成的,它是由构造器引用来实现的:
map(BedRocker::new) // 将 String 映射到 BedRocker
传递给构造器的值是 names
数组中的其中一项。
此代码示例的第二行还演示了一个你目前已经非常熟悉的转换:先将数组先转换成 List
,然后再转换成 Stream
:
Streambedrockers = Arrays.asList(names).stream().map(BedRocker::new);
第三行则是另一种方式 —— 流 bedrockers
通过使用数组构造器引用 BedRocker[]::new
调用 toArray
方法:
BedRocker[ ] arrayBR = bedrockers.toArray(BedRocker[]::new);
该构造器引用不会创建单个 BedRocker
实例,而是创建这些实例的整个数组:该构造器引用现在为 BedRocker[]:new
,而不是 BedRocker::new
。为了进行确认,将 arrayBR
转换为 List
,再次对其进行流式处理,以便可以使用 forEach
来打印 BedRocker
的名字。
FredWilmaPeeblesDinoBaby Puss
该示例对数据结构的微妙转换仅用几行代码即可完成,从而突出了可以将 lambda,方法引用或构造器引用作为参数的各种高阶函数的功能。
柯里化函数是指减少函数执行任何工作所需的显式参数的数量(通常减少到一个)。(该术语是为了纪念逻辑学家 Haskell Curry。)一般来说,函数的参数越少,调用起来就越容易,也更健壮。(回想一下一些需要半打左右参数的噩梦般的函数!)因此,应将柯里化视为简化函数调用的一种尝试。java.util.function
包中的接口类型适合于柯里化,如以下示例所示。
引用的 IntBinaryOperator
接口类型是为函数接受两个整型参数,并返回一个整型值:
IntBinaryOperator mult2 = (n1, n2) -> n1 * n2;mult2.applyAsInt(10, 20); // 200mult2.applyAsInt(10, 30); // 300
引用 mult2
强调了需要两个显式参数,在本例中是 10 和 20。
前面介绍的 IntUnaryOperator
比 IntBinaryOperator
简单,因为前者只需要一个参数,而后者则需要两个参数。两者均返回整数值。因此,目标是将名为 mult2
的两个参数 IntBinraryOperator
柯里化成一个单一的 IntUnaryOperator
版本 curriedMult2
。
考虑 IntFunction
类型。此类型的函数采用整型参数,并返回类型为 R
的结果,该结果可以是另一个函数 —— 更准确地说,是 IntBinaryOperator
。让一个 lambda 返回另一个 lambda 很简单:
arg1 -> (arg2 -> arg1 * arg2) // 括号可以省略
完整的 lambda 以 arg1
开头,而该 lambda 的主体以及返回的值是另一个以 arg2
开头的 lambda。返回的 lambda 仅接受一个参数(arg2
),但返回了两个数字的乘积(arg1
和 arg2
)。下面的概述,再加上代码,应该可以更好地进行说明。
以下是如何柯里化 mult2
的概述:
类型为 IntFunction
的 lambda 被写入并调用,其整型值为 10。返回的 IntUnaryOperator
缓存了值 10,因此变成了已柯里化版本的 mult2
,在本例中为 curriedMult2
。
然后使用单个显式参数(例如,20)调用 curriedMult2
函数,该参数与缓存的参数(在本例中为 10)相乘以生成返回的乘积。。
这是代码的详细信息:
// 创建一个接受一个参数 n1 并返回一个单参数 n2 -> n1 * n2 的函数,该函数返回一个(n1 * n2 乘积的)整型数。IntFunctioncurriedMult2Maker = n1 -> (n2 -> n1 * n2);
调用 curriedMult2Maker
生成所需的 IntUnaryOperator
函数:
// 使用 curriedMult2Maker 获取已柯里化版本的 mult2。// 参数 10 是上面的 lambda 的 n1。IntUnaryOperator curriedMult2 = curriedMult2Maker2.apply(10);
值 10
现在缓存在 curriedMult2
函数中,以便 curriedMult2
调用中的显式整型参数乘以 10:
curriedMult2.applyAsInt(20); // 200 = 10 * 20curriedMult2.applyAsInt(80); // 800 = 10 * 80
缓存的值可以随意更改:
curriedMult2 = curriedMult2Maker.apply(50); // 缓存 50curriedMult2.applyAsInt(101); // 5050 = 101 * 50
当然,可以通过这种方式创建多个已柯里化版本的 mult2
,每个版本都有一个 IntUnaryOperator
。
柯里化充分利用了 lambda 的强大功能:可以很容易地编写 lambda 表达式来返回需要的任何类型的值,包括另一个 lambda。
到此,关于“Java数据流和函数式编程如何实现”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!