重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本篇文章给大家分享的是有关如何进行storm1.1.3与kafka1.0.0整合,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都做网站、网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的会同网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
package hgs.core.sk; import java.util.Map; import org.apache.storm.Config; import org.apache.storm.LocalCluster; import org.apache.storm.StormSubmitter; import org.apache.storm.kafka.BrokerHosts; import org.apache.storm.kafka.KafkaSpout; import org.apache.storm.kafka.SpoutConfig; import org.apache.storm.kafka.ZkHosts; import org.apache.storm.task.OutputCollector; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.TopologyBuilder; import org.apache.storm.topology.base.BaseRichBolt; import org.apache.storm.tuple.Tuple; @SuppressWarnings("deprecation") public class StormKafkaMainTest { public static void main(String[] args) { TopologyBuilder builder = new TopologyBuilder(); //zookeeper链接地址 BrokerHosts hosts = new ZkHosts("bigdata01:2181,bigdata02:2181,bigdata03:2181"); //KafkaSpout需要一个config,参数代表的意义1:zookeeper链接,2:消费kafka的topic,3,4:记录消费offset的zookeeper地址 ,这里会保存在 zookeeper //集群的/test7/consume下面 SpoutConfig sconfig = new SpoutConfig(hosts, "test7", "/test7", "consume"); //消费的时候忽略offset从头开始消费,这里可以注释掉,因为消费的offset在zookeeper中可以找到 sconfig.ignoreZkOffsets=true; //sconfig.scheme = new SchemeAsMultiScheme( new StringScheme() ); builder.setSpout("kafkaspout", new KafkaSpout(sconfig), 1); builder.setBolt("mybolt1", new MyboltO(), 1).shuffleGrouping("kafkaspout"); Config config = new Config(); config.setNumWorkers(1); try { StormSubmitter.submitTopology("storm----kafka--test", config, builder.createTopology()); } catch (Exception e) { e.printStackTrace(); } /* LocalCluster cu = new LocalCluster(); cu.submitTopology("test", config, builder.createTopology());*/ } } class MyboltO extends BaseRichBolt{ private static final long serialVersionUID = 1L; OutputCollector collector = null; public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector = collector; } public void execute(Tuple input) { //这里把消息大一出来,在对应的woker下面的日志可以找到打印的内容 //因为得到的内容是byte数组,所以需要转换 String out = new String((byte[])input.getValue(0)); System.out.println(out); collector.ack(input); } public void declareOutputFields(OutputFieldsDeclarer declarer) { } }
pom.xml文件的依赖
4.0.0 hgs core.sk 1.0.0-SNAPSHOT jar core.sk http://maven.apache.org UTF-8 junit junit 3.8.1 test org.apache.storm storm-kafka 1.1.3 org.apache.storm storm-core 1.1.3 provided org.apache.kafka kafka_2.11 1.0.0 org.slf4j slf4j-log4j12 org.apache.zookeeper zookeeper org.clojure clojure 1.7.0 org.apache.kafka kafka-clients 1.0.0 maven-assembly-plugin 2.2 hgs.core.sk.StormKafkaMainTest jar-with-dependencies make-assembly package single org.apache.maven.plugins maven-compiler-plugin 1.8
以上就是如何进行storm1.1.3与kafka1.0.0整合,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。