重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要讲解了“Spark ALS实现的步骤是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Spark ALS实现的步骤是什么”吧!
公司主营业务:网站设计、做网站、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联推出吴川免费做网站回馈大家。
spark ALS算法是做个性推荐用的,它所需要的数据集是类似用户对商品的打分表之类的数据集。实现步骤主要以下几步:
1、定义输入数据
2、输入数据转换成评分数据格式,如case class Rating(user: Int, movie: Int, rating: Float)
3、设计ALS模型训练数据
4、计算推荐数据,存储起来供业务系统直接使用。
下面看看具体的代码:
package recommend import org.apache.spark.sql.SparkSession import java.util.Properties import org.apache.spark.rdd.RDD import org.apache.spark.ml.evaluation.RegressionEvaluator import org.apache.spark.ml.recommendation.ALS import org.apache.spark.ml.feature.StringIndexer import org.apache.spark.sql.Dataset import org.apache.spark.sql.Row import org.apache.spark.ml.feature.IndexToString import scala.collection.mutable.ArrayBuffer import org.apache.spark.TaskContext import org.apache.spark.ml.Pipeline import org.apache.spark.sql.SaveMode /** * 个性化推荐ALS算法 * 用户对资源的点击率作为评分 * */ object Recommend { case class Rating(user: Int, movie: Int, rating: Float) def main(args: Array[String]): Unit = { val spark = SparkSession.builder().appName("Java Spark MySQL Recommend") .master("local") .config("es.nodes", "127.0.0.1") .config("es.port", "9200") .config("es.mapping.date.rich", "false") //不解析日期类型 .getOrCreate() trainModel(spark) spark.close() } def trainModel(spark: SparkSession): Unit = { import spark.implicits._ val MAX = 3 // 最大推荐数目 val rank = 10 // 向量大小,默认10 val iterations = 10 // 迭代次数,默认10 val url = "jdbc:mysql://127.0.0.1:3306/test?useUnicode=true&characterEncoding=utf8" val table = "clicks" val user = "root" val pass = "123456" val props = new Properties() props.setProperty("user", user) // 设置用户名 props.setProperty("password", pass) // 设置密码 val clicks = spark.read.jdbc(url, table, props).repartition(4) clicks.createOrReplaceGlobalTempView("clicks") val agg = spark.sql("SELECT userId ,resId ,COUNT(id) AS clicks FROM global_temp.clicks GROUP BY userId,resId") val userIndexer = new StringIndexer() .setInputCol("userId") .setOutputCol("userIndex") val resIndexer = new StringIndexer() .setInputCol("resId") .setOutputCol("resIndex") val indexed1 = userIndexer.fit(agg).transform(agg) val indexed2 = resIndexer.fit(indexed1).transform(indexed1) indexed2.show() val ratings = indexed2.map(x => Rating(x.getDouble(3).toInt, x.getDouble(4).toInt, x.getLong(2).toFloat)) ratings.show() val Array(training, test) = ratings.randomSplit(Array(0.9, 0.1)) println("training:") training.show() println("test:") test.show() //隐性反馈和显示反馈 val als = new ALS() .setMaxIter(iterations) .setRegParam(0.01) .setImplicitPrefs(false) .setUserCol("user") .setItemCol("movie") .setRatingCol("rating") val model = als.fit(ratings) // Evaluate the model by computing the RMSE on the test data // Note we set cold start strategy to 'drop' to ensure we don't get NaN evaluation metrics model.setColdStartStrategy("drop") val predictions = model.transform(test) val r2 = model.recommendForAllUsers(MAX) println(r2.schema) val result = r2.rdd.flatMap(row => { val userId = row.getInt(0) val arrayPredict: Seq[Row] = row.getSeq(1) var result = ArrayBuffer[Rating]() arrayPredict.foreach(rowPredict => { val p = rowPredict(0).asInstanceOf[Int] val score = rowPredict(1).asInstanceOf[Float] val sql = "insert into recommends(userId,resId,score) values (" + userId + "," + rowPredict(0) + "," + rowPredict(1) + ")" println("sql:" + sql) result.append(Rating(userId, p, score)) }) for (i <- result) yield { i } }) println("推荐结果RDD已展开") result.toDF().show() //资源id隐射 val resInt2Index = new IndexToString() .setInputCol("movie") .setOutputCol("resId") .setLabels(resIndexer.fit(indexed1).labels) //userId映射 val userInt2Index = new IndexToString() .setInputCol("user") .setOutputCol("userId") .setLabels(userIndexer.fit(agg).labels) val rc = userInt2Index.transform(resInt2Index.transform(result.toDF())) rc.show() rc.withColumnRenamed("rating","score").select("userId", "resId","score").write.mode(SaveMode.Overwrite) .format("jdbc") .option("url", url) .option("dbtable", "recommends") .option("user", user) .option("password", pass) .option("batchsize", "5000") .option("truncate", "true") .save println("finished!!!") } }
DataFrame写入mysql还有另一种写法,就是原生写入:
//分区写推荐结果到mysql r2.foreachPartition(p => { @transient val conn = ConnectionPool.getConnection p.foreach(row => { val userId = row.getInt(0) val arrayPredict: Seq[Row] = row.getSeq(1) arrayPredict.foreach(rowPredict => { println(rowPredict(0) + "@" + rowPredict(1)) val sql = "insert into recommends(userId,resId,score) values (" + userId+"," + rowPredict(0)+","+ rowPredict(1) + ")" println("sql:"+sql) val stmt = conn.createStatement stmt.executeUpdate(sql) }) }) ConnectionPool.returnConnection(conn) })
感谢各位的阅读,以上就是“Spark ALS实现的步骤是什么”的内容了,经过本文的学习后,相信大家对Spark ALS实现的步骤是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!