重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

window和groupBy操作方法是什么

这篇文章主要介绍“window和groupBy操作方法是什么”,在日常操作中,相信很多人在window和groupBy操作方法是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”window和groupBy操作方法是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

站在用户的角度思考问题,与客户深入沟通,找到乌翠网站设计与乌翠网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都做网站、成都网站制作、成都外贸网站建设、企业官网、英文网站、手机端网站、网站推广、域名注册虚拟主机、企业邮箱。业务覆盖乌翠地区。

window操作

import spark.implicits._

val words = ... // streaming DataFrame of schema { timestamp: Timestamp, word: String }

// Group the data by window and word and compute the count of each group
val windowedCounts = words.groupBy(
  window($"timestamp", "10 minutes", "5 minutes"),
  $"word"
).count()

window操作是连续流特有的操作,设置时间窗口大小,根据窗口大小来执行groupBy操作等。

看看dataset上的groupBy操作。

groupBy操作

定义:

 def groupBy(cols: Column*): RelationalGroupedDataset = {

    RelationalGroupedDataset(toDF(), cols.map(_.expr), RelationalGroupedDataset.GroupByType)

  }

生成新的RelationalGroupedDataset对象。该对象最重要得方法:

 private[this] def toDF(aggExprs: Seq[Expression]): DataFrame = {

    val aggregates = if (df.sparkSession.sessionState.conf.dataFrameRetainGroupColumns) {

      groupingExprs ++ aggExprs

    } else {

      aggExprs

    }

    val aliasedAgg = aggregates.map(alias)

    groupType match {

      case RelationalGroupedDataset.GroupByType =>

        Dataset.ofRows(df.sparkSession, Aggregate(groupingExprs, aliasedAgg, df.logicalPlan))

      case RelationalGroupedDataset.RollupType =>

        Dataset.ofRows(

          df.sparkSession, Aggregate(Seq(Rollup(groupingExprs)), aliasedAgg, df.logicalPlan))

      case RelationalGroupedDataset.CubeType =>

        Dataset.ofRows(

          df.sparkSession, Aggregate(Seq(Cube(groupingExprs)), aliasedAgg, df.logicalPlan))

      case RelationalGroupedDataset.PivotType(pivotCol, values) =>

        val aliasedGrps = groupingExprs.map(alias)

        Dataset.ofRows(

          df.sparkSession, Pivot(Some(aliasedGrps), pivotCol, values, aggExprs, df.logicalPlan))

    }

  }

我们就看一个吧:

Dataset.ofRows(df.sparkSession, Aggregate(groupingExprs, aliasedAgg, df.logicalPlan))

看看它的实现机制是怎样得?

这里得Aggregate是一种LogicPlan,我们只要看看Aggregate的实现机制就可以了。

Aggregate的实现机制就要涉及到catalyst包里的相关类了。

到此,关于“window和groupBy操作方法是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


名称栏目:window和groupBy操作方法是什么
分享URL:http://cqcxhl.cn/article/gjjipd.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP