重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Python解析参数的方法有哪些

本篇内容主要讲解“Python解析参数的方法有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python解析参数的方法有哪些”吧!

我们一直强调网站制作、成都网站制作对于企业的重要性,如果您也觉得重要,那么就需要我们慎重对待,选择一个安全靠谱的网站建设公司,企业网站我们建议是要么不做,要么就做好,让网站能真正成为企业发展过程中的有力推手。专业网站建设公司不一定是大公司,创新互联作为专业的网络公司选择我们就是放心。

Python解析参数的方法有哪些

先决条件

在下面的代码中,我将使用 Visual Studio Code,这是一个非常高效的集成 Python 开发环境。这个工具的美妙之处在于它通过安装扩展支持每种编程语言,集成终端并允许同时处理大量 Python 脚本和 Jupyter 笔记本

数据集,使用的是 Kaggle 上的共享自行车数据集

使用 argparse

Python解析参数的方法有哪些
就像上图所示,我们有一个标准的结构来组织我们的小项目:

  • 包含我们数据集的名为 data 的文件夹

  • train.py 文件

  • 用于指定超参数的 options.py 文件

首先,我们可以创建一个文件 train.py,在其中我们有导入数据、在训练数据上训练模型并在测试集上对其进行评估的基本程序:

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error

from options import train_options

df = pd.read_csv('data\hour.csv')
print(df.head())
opt = train_options()

X=df.drop(['instant','dteday','atemp','casual','registered','cnt'],axis=1).values
y =df['cnt'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

if opt.normalize == True:
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
    
rf = RandomForestRegressor(n_estimators=opt.n_estimators,max_features=opt.max_features,max_depth=opt.max_depth)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)
rmse = np.sqrt(mean_squared_error(y_pred, y_test))
mae = mean_absolute_error(y_pred, y_test)
print("rmse: ",rmse)
print("mae: ",mae)

在代码中,我们还导入了包含在 options.py 文件中的 train_options 函数。后一个文件是一个 Python 文件,我们可以从中更改 train.py 中考虑的超参数:

import argparse

def train_options():
    parser = argparse.ArgumentParser()
    parser.add_argument("--normalize", default=True, type=bool, help='maximum depth')
    parser.add_argument("--n_estimators", default=100, type=int, help='number of estimators')
    parser.add_argument("--max_features", default=6, type=int, help='maximum of features',)
    parser.add_argument("--max_depth", default=5, type=int,help='maximum depth')
    opt = parser.parse_args()
    return opt

在这个例子中,我们使用了 argparse 库,它在解析命令行参数时非常流行。首先,我们初始化解析器,然后,我们可以添加我们想要访问的参数。

这是运行代码的示例:

python train.py

Python解析参数的方法有哪些
要更改超参数的默认值,有两种方法。第一个选项是在 options.py 文件中设置不同的默认值。另一种选择是从命令行传递超参数值:

python train.py --n_estimators 200

我们需要指定要更改的超参数的名称和相应的值。

python train.py --n_estimators 200 --max_depth 7

使用 JSON 文件

Python解析参数的方法有哪些
和前面一样,我们可以保持类似的文件结构。在这种情况下,我们将 options.py 文件替换为 JSON 文件。换句话说,我们想在 JSON 文件中指定超参数的值并将它们传递给 train.py 文件。与 argparse 库相比,JSON 文件可以是一种快速且直观的替代方案,它利用键值对来存储数据。下面我们创建一个 options.json 文件,其中包含我们稍后需要传递给其他代码的数据。

{
"normalize":true,
"n_estimators":100,
"max_features":6,
"max_depth":5 
}

如上所见,它与 Python 字典非常相似。但是与字典不同的是,它包含文本/字符串格式的数据。此外,还有一些语法略有不同的常见数据类型。例如,布尔值是 false/true,而 Python 识别 False/True。JSON 中其他可能的值是数组,它们用方括号表示为 Python 列表。

在 Python 中使用 JSON 数据的美妙之处在于,它可以通过 load 方法转换成 Python 字典:

f = open("options.json", "rb")
parameters = json.load(f)

要访问特定项目,我们只需要在方括号内引用它的键名:

if parameters["normalize"] == True:
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
rf=RandomForestRegressor(n_estimators=parameters["n_estimators"],max_features=parameters["max_features"],max_depth=parameters["max_depth"],random_state=42)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)

使用 YAML 文件

Python解析参数的方法有哪些
最后一种选择是利用 YAML 的潜力。与 JSON 文件一样,我们将 Python 代码中的 YAML 文件作为字典读取,以访问超参数的值。YAML 是一种人类可读的数据表示语言,其中层次结构使用双空格字符表示,而不是像 JSON 文件中的括号。下面我们展示 options.yaml 文件将包含的内容:

normalize: True 
n_estimators: 100
max_features: 6
max_depth: 5

在 train.py 中,我们打开 options.yaml 文件,该文件将始终使用 load 方法转换为 Python 字典,这一次是从 yaml 库中导入的:

import yaml
f = open('options.yaml','rb')
parameters = yaml.load(f, Loader=yaml.FullLoader)

和前面一样,我们可以使用字典所需的语法访问超参数的值。

到此,相信大家对“Python解析参数的方法有哪些”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


网站栏目:Python解析参数的方法有哪些
文章出自:http://cqcxhl.cn/article/gopdoc.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP