重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

html5中怎么利用Canvas绘制椭圆

html5中怎么利用Canvas绘制椭圆,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

创新互联 - 成都西信服务器托管,四川服务器租用,成都服务器租用,四川网通托管,绵阳服务器托管,德阳服务器托管,遂宁服务器托管,绵阳服务器托管,四川云主机,成都云主机,西南云主机,成都西信服务器托管,西南服务器托管,四川/成都大带宽,大带宽服务器,四川老牌IDC服务商

概述
HTML5中的Canvas并没有直接提供绘制椭圆的方法,下面是对几种绘制方法的总结。各种方法各有优缺,视情况选用。各方法的参数相同:
context为Canvas的2D绘图环境对象,
x为椭圆中心横坐标,
y为椭圆中心纵坐标,
a为椭圆横半轴长,
b为椭圆纵半轴长。
参数方程法
该方法利用椭圆的参数方程来绘制椭圆

代码如下:


//-----------用参数方程绘制椭圆---------------------
//函数的参数x,y为椭圆中心;a,b分别为椭圆横半轴、
//纵半轴长度,不可同时为0
//该方法的缺点是,当linWidth较宽,椭圆较扁时
//椭圆内部长轴端较为尖锐,不平滑,效率较低
function ParamEllipse(context, x, y, a, b)
{
//max是等于1除以长轴值a和b中的较大者
//i每次循环增加1/max,表示度数的增加
//这样可以使得每次循环所绘制的路径(弧线)接近1像素
var step = (a > b) ? 1 / a : 1 / b;
context.beginPath();
context.moveTo(x + a, y); //从椭圆的左端点开始绘制
for (var i = 0; i < 2 * Math.PI; i += step)
{
//参数方程为x = a * cos(i), y = b * sin(i),
//参数为i,表示度数(弧度)
context.lineTo(x + a * Math.cos(i), y + b * Math.sin(i));
}
context.closePath();
context.stroke();
};


均匀压缩法
这种方法利用了数学中的均匀压缩原理将圆进行均匀压缩为椭圆,理论上为能够得到标准的椭圆.下面的代码会出现线宽不一致的问题,解决办法看5楼simonleung的评论。

代码如下:


//------------均匀压缩法绘制椭圆--------------------
//其方法是用arc方法绘制圆,结合scale进行
//横轴或纵轴方向缩放(均匀压缩)
//这种方法绘制的椭圆的边离长轴端越近越粗,长轴端点的线宽是正常值
//边离短轴越近、椭圆越扁越细,甚至产生间断,这是scale导致的结果
//这种缺点某些时候是优点,比如在表现环的立体效果(行星光环)时
//对于参数a或b为0的情况,这种方法不适用
function EvenCompEllipse(context, x, y, a, b)
{
context.save();
//选择a、b中的较大者作为arc方法的半径参数
var r = (a > b) ? a : b;
var ratioX = a / r; //横轴缩放比率
var ratioY = b / r; //纵轴缩放比率
context.scale(ratioX, ratioY); //进行缩放(均匀压缩)
context.beginPath();
//从椭圆的左端点开始逆时针绘制
context.moveTo((x + a) / ratioX, y / ratioY);
context.arc(x / ratioX, y / ratioY, r, 0, 2 * Math.PI);
context.closePath();
context.stroke();
context.restore();
};


三次贝塞尔曲线法一
三次贝塞尔曲线绘制椭圆在实际绘制时是一种近似,在理论上也是一种近似。 但因为其效率较高,在计算机矢量图形学中,常用于绘制椭圆,但是具体的理论我不是很清楚。 近似程度在于两个控制点位置的选取。这种方法的控制点位置是我自己试验得出,精度还可以.

代码如下:


//---------使用三次贝塞尔曲线模拟椭圆1---------------------
//此方法也会产生当lineWidth较宽,椭圆较扁时,
//长轴端较尖锐,不平滑的现象
function BezierEllipse1(context, x, y, a, b)
{
//关键是bezierCurveTo中两个控制点的设置
//0.5和0.6是两个关键系数(在本函数中为试验而得)
var ox = 0.5 * a,
oy = 0.6 * b;
context.save();
context.translate(x, y);
context.beginPath();
//从椭圆纵轴下端开始逆时针方向绘制
context.moveTo(0, b);
context.bezierCurveTo(ox, b, a, oy, a, 0);
context.bezierCurveTo(a, -oy, ox, -b, 0, -b);
context.bezierCurveTo(-ox, -b, -a, -oy, -a, 0);
context.bezierCurveTo(-a, oy, -ox, b, 0, b);
context.closePath();
context.stroke();
context.restore();
};


三次贝塞尔曲线法二
这种方法是从StackOverFlow中一个帖子的回复中改变而来,精度较高,也是通常用来绘制椭圆的方法.

代码如下:


//---------使用三次贝塞尔曲线模拟椭圆2---------------------
//此方法也会产生当lineWidth较宽,椭圆较扁时
//,长轴端较尖锐,不平滑的现象
//这种方法比前一个贝塞尔方法精确度高,但效率稍差
function BezierEllipse2(ctx, x, y, a, b)
{
var k = .5522848,
ox = a * k, // 水平控制点偏移量
oy = b * k; // 垂直控制点偏移量
ctx.beginPath();
//从椭圆的左端点开始顺时针绘制四条三次贝塞尔曲线
ctx.moveTo(x - a, y);
ctx.bezierCurveTo(x - a, y - oy, x - ox, y - b, x, y - b);
ctx.bezierCurveTo(x + ox, y - b, x + a, y - oy, x + a, y);
ctx.bezierCurveTo(x + a, y + oy, x + ox, y + b, x, y + b);
ctx.bezierCurveTo(x - ox, y + b, x - a, y + oy, x - a, y);
ctx.closePath();
ctx.stroke();
};


光栅法
这种方法可以根据Canvas能够操作像素的特点,利用图形学中的基本算法来绘制椭圆。 例如中点画椭圆算法等。
其中一个例子是园友“豆豆狗”的一篇博文“HTML5 Canvas 提高班(一) —— 光栅图形学(1)中点画圆算法”。这种方法由于比较“原始”,灵活性大,效率高,精度高,但要想实现一个有使用价值的绘制椭圆的函数,比较复杂。比如,要当线宽改变时,算法就复杂一些。虽然是画圆的算法,但画椭圆的算法与之类似,可以参考下。
Demo
下面是除光栅法之外,几个绘制椭圆函数的演示,演示代码如下:

代码如下:








关于html5中怎么利用Canvas绘制椭圆问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。


网页题目:html5中怎么利用Canvas绘制椭圆
本文路径:http://cqcxhl.cn/article/gopgpp.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP