重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

RGraphCookbook代码怎么写

R Graph Cookbook 代码怎么写,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

我们提供的服务有:做网站、成都网站制作、微信公众号开发、网站优化、网站认证、常山ssl等。为上1000+企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的常山网站制作公司

#CHAPTER 5
#Recipe 1. 多个因素变量条形图Creating Bar charts with more than one factor variable

install.packages("RColorBrewer")  #if not already installed
library(RColorBrewer) 

citysales<-read.csv("citysales.csv")

barplot(as.matrix(citysales[,2:4]), beside=TRUE,
        legend.text=citysales$City,
        args.legend=list(bty="n",horiz=TRUE),
        col=brewer.pal(5,"Set1"),
        border="white",
        ylim=c(0,100),
        ylab="Sales Revenue (1,000's of USD)",
        main="Sales Figures")

box(bty="l")


#Recipe 2.创建堆叠条形图 Creating stacked bar charts

install.packages("RColorBrewer")
library(RColorBrewer)

citysales<-read.csv("citysales.csv")

barplot(as.matrix(citysales[,2:4]),  
        legend.text=citysales$City,
        args.legend=list(bty="n",horiz=TRUE),
        col=brewer.pal(5,"Set1"),
        border="white",
        ylim=c(0,200),
        ylab="Sales Revenue (1,000's of USD)",
        main="Sales Figures")


citysalesperc<-read.csv("citysalesperc.csv") 

par(mar=c(5,4,4,8),xpd=T)

barplot(as.matrix(citysalesperc[,2:4]), 
        col=brewer.pal(5,"Set1"),
        border="white",
        ylab="Sales Revenue (1,000's of USD)", 
        main="Percentage Sales Figures") 

legend("right",legend=citysalesperc$City,bty="n",inset=c(-0.3,0),fill=brewer.pal(5,"Set1"))



#Recipe 3. 调整条形图方向(水平和垂直)Adjusting the orientation of bars ?horizontal and vertical

barplot(as.matrix(citysales[,2:4]), beside=TRUE,horiz=TRUE,
        legend.text=citysales$City,
        args.legend=list(bty="n"),
        col=brewer.pal(5,"Set1"),
        border="white",
        xlim=c(0,100),
        xlab="Sales Revenue (1,000's of USD)",
        main="Sales Figures")

par(mar=c(5,4,4,8),xpd=T)
	
barplot(as.matrix(citysalesperc[,2:4]), horiz=TRUE,
        col=brewer.pal(5,"Set1"),
        border="white",
        xlab="Percentage of Sales",
        main="Perecentage Sales Figures")

legend("right",legend=citysalesperc$City,bty="n",
inset=c(-0.3,0),fill=brewer.pal(5,"Set1"))


#Recipe 4.调整杆宽度、间距、颜色和边界 Adjusting bar widths, spacing, colours and borders

barplot(as.matrix(citysales[,2:4]), beside=TRUE,
     legend.text=citysales$City,
     args.legend=list(bty="n",horiz=T),
     col=c("#E5562A","#491A5B","#8C6CA8","#BD1B8A","#7CB6E4"),
     border=FALSE,
     space=c(0,5),
     ylim=c(0,100),
     ylab="Sales Revenue (1,000's of USD)",
     main="Sales Figures")


barplot(as.matrix(citysales[,2:4]), beside=T,
        legend.text=citysales$City,
        args.legend=list(bty="n",horiz=T),
        ylim=c(0,100),
        ylab="Sales Revenue (1,000's of USD)",
        main="Sales Figures")


#Recipe 5.条线上方或旁边显示值 Displaying values on top of or next to the bars

x<-barplot(as.matrix(citysales[,2:4]), beside=TRUE,
        legend.text=citysales$City,
        args.legend=list(bty="n",horiz=TRUE),
        col=brewer.pal(5,"Set1"),
        border="white",
        ylim=c(0,100),
        ylab="Sales Revenue (1,000's of USD)",
        main="Sales Figures")

y<-as.matrix(citysales[,2:4])

text(x,y+2,labels=as.character(y))


#Horizontal bars
y<-barplot(as.matrix(citysales[,2:4]), beside=TRUE,horiz=TRUE,
        legend.text=citysales$City,
        args.legend=list(bty="n"),
        col=brewer.pal(5,"Set1"),
        border="white",
        xlim=c(0,100),
        xlab="Sales Revenue (1,000's of USD)",
        main="Sales Figures")

x<-as.matrix(citysales[,2:4])

text(x+2,y,labels=as.character(x))



#Recipe 6. Placing labels inside bars

rain<-read.csv("cityrain.csv")
	
y<-barplot(as.matrix(rain[1,-1]),horiz=T,col="white",yaxt="n",
main="Monthly Rainfall in Major CitiesJanuary",
xlab="Rainfall (mm)")

x<-0.5*rain[1,-1] 
text(x,y,colnames(rain[-1]))



#Recipe 7.创建带垂直误差线的条形图Creating Bar charts with vertical error bars

sales<-t(as.matrix(citysales[,-1]))
colnames(sales)<-citysales[,1] 

x<-barplot(sales,beside=T,legend.text=rownames(sales),
args.legend=list(bty="n",horiz=T),
col=brewer.pal(3,"Set2"),border="white",ylim=c(0,100),
        ylab="Sales Revenue (1,000's of USD)",
        main="Sales Figures")

arrows(x0=x,
y0=sales*0.95,
x1=x,
y1=sales*1.05,
angle=90,
code=3,
length=0.04,
lwd=0.4)


#Creating a function
errorbars<-function(x,y,upper,lower=upper,length=0.04,lwd=0.4,...) {
arrows(x0=x,
y0=y+upper,
x1=x,
y1=y-lower,
angle=90,
code=3,
length=length,
lwd=lwd)
}

errorbars(x,sales,0.05*sales) 


#Recipe 8. 带条件变量的点阵图Modifying dotplots by grouping variables

install.packages("reshape")
library(reshape)

sales<-melt(citysales)

sales$color[sales[,2]=="ProductA"] <- "red"
sales$color[sales[,2]=="ProductB"] <- "blue"
sales$color[sales[,2]=="ProductC"] <- "violet"

dotchart(sales[,3],labels=sales$City,groups=sales[,2],
col=sales$color,pch=19,
main="Sales Figures",
xlab="Sales Revenue (1,000's of USD)")


#Recipe 9. 可读性更好的饼图Making better readable pie charts with clockwise-ordered slices

browsers<-read.table("browsers.txt",header=TRUE)
browsers<-browsers[order(browsers[,2]),]

pie(browsers[,2],
labels=browsers[,1],
clockwise=TRUE,
radius=1,
col=brewer.pal(7,"Set1"),
border="white",
main="Percentage Share of Internet Browser usage")



#Recipe 10. 对饼图增加标签Labelling a pie chart with percentage values for each slice 

	browsers<-read.table("browsers.txt",header=TRUE)
	browsers<-browsers[order(browsers[,2]),]
	
pielabels <- sprintf("%s = %3.1f%s", browsers[,1], 100*browsers[,2]/sum(browsers[,2]), "%")

pie(browsers[,2],
labels=pielabels,
clockwise=TRUE,
radius=1,
col=brewer.pal(7,"Set1"),
border="white",
cex=0.8,
main="Percentage Share of Internet Browser usage")



#Recipe 11.饼图增添图例 Adding a legend to a pie chart

	browsers<-read.table("browsers.txt",header=TRUE)
	browsers<-browsers[order(browsers[,2]),]
	
pielabels <- sprintf("%s = %3.1f%s", browsers[,1], 100*browsers[,2]/sum(browsers[,2]), "%")

pie(browsers[,2],
labels=NA,
clockwise=TRUE,
col=brewer.pal(7,"Set1"),
border="white",
radius=0.7,
cex=0.8,
main="Percentage Share of Internet Browser usage")

legend("bottomright",legend=pielabels,bty="n",
fill=brewer.pal(7,"Set1"))
#Recipe 1.频率或概率的图示 Visualising distributions as frequency or probability  

air<-read.csv("airpollution.csv")

hist(air$Nitrogen.Oxides,
     xlab="Nitrogen Oxide Concentrations",
     main="Distribution of Nitrogen Oxide Concentrations")


hist(air$Nitrogen.Oxides,
     freq=FALSE,
     xlab="Nitrogen Oxide Concentrations",
     main="Distribution of Nitrogen Oxide Concentrations")



#Recipe 2.设置直方图箱宽度和截断数 Setting bin size and number of breaks

air<-read.csv("airpollution.csv")

hist(air$Nitrogen.Oxides,
     breaks=20,
     xlab="Nitrogen Oxide Concentrations",
     main="Distribution of Nitrogen Oxide Concentrations")

hist(air$Nitrogen.Oxides,
     breaks=c(0,100,200,300,400,500,600),
     xlab="Nitrogen Oxide Concentrations",
     main="Distribution of Nitrogen Oxide Concentrations")

#Recipe 3.调整直方图风格:颜色、边界、坐标 Adjusting histogram styles: bar colours, borders and axes

air<-read.csv("airpollution.csv")

hist(air$Respirable.Particles,
     prob=TRUE,
     col="black",
     border="white",
     xlab="Respirable Particle Concentrations",
     main="Distribution of Respirable Particle Concentrations")


par(yaxs="i",las=1)
hist(air$Respirable.Particles,
     prob=TRUE,	
     col="black",
     border="white",
     xlab="Respirable Particle Concentrations",
     main="Distribution of Respirable Particle Concentrations")
box(bty="l")
grid(nx=NA,ny=NULL,lty=1,lwd=1,col="gray")



#Recipe 4.直方图上增加密度拟合线 Overlaying density line over a histogram

par(yaxs="i",las=1)
hist(air$Respirable.Particles,
     prob=TRUE,
     col="black",
     border="white",
     xlab="Respirable Particle Concentrations",
     main="Distribution of Respirable Particle Concentrations")
box(bty="l")

lines(density(air$Respirable.Particles,na.rm=T),col="red",lwd=4)
grid(nx=NA,ny=NULL,lty=1,lwd=1,col="gray")



#Recipe 5.带直方图的矩阵图 Multiple histograms along the diagonal of a pairs plot

panel.hist <- function(x, ...)
  {
    par(usr = c(par("usr")[1:2], 0, 1.5) )
    hist(x, prob=TRUE,add=TRUE,col="black",border="white")
  }


plot(iris[,1:4],
     main="Relationships between characteristics of iris flowers",
     pch=19,
     col="blue",
     cex=0.9,
     diag.panel=panel.hist)


#Recipe 6. Histograms in the margins of line and scatterplots

air<-read.csv("airpollution.csv")

#Set up the layout first
layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), widths=c(3,1), heights=c(1,3), TRUE)

#Make Scatterplot
par(mar=c(5.1,4.1,0.1,0))
plot(air$Respirable.Particles~air$Nitrogen.Oxides,
     pch=19,col="black",
     xlim=c(0,600),ylim=c(0,80),
     xlab="Nitrogen Oxides Concentrations",
     ylab="Respirable Particle Concentrations")

#Plot histogram of X variable in the top row
par(mar=c(0,4.1,3,0))
hist(air$Nitrogen.Oxides,
     breaks=seq(0,600,100),
     ann=FALSE,axes=FALSE,
     col="black",border="white")

#Plot histogram of Y variable to the right of the scatterplot
yhist <- hist(air$Respirable.Particles,
              breaks=seq(0,80,10),
              plot=FALSE)

par(mar=c(5.1,0,0.1,1))
barplot(yhist$density,
        horiz=TRUE,
        space=0,axes=FALSE,
        col="black",border="white")
#CHATER 7
#Recipe 1. Creating box plots with narrow boxes for small number of variables

air<-read.csv("airpollution.csv")

boxplot(air,las=1)

boxplot(air,boxwex=0.2,las=1)

par(las=1)

boxplot(air,width=c(1,2))

#Recipe 2. Grouping over a variable

metals<-read.csv("metals.csv")

boxplot(Cu~Source,data=metals,
		main="Summary of Copper (Cu) concentrations by Site")

boxplot(Cu~Source*Expt,data=metals,
		main="Summary of Copper (Cu) concentrations by Site")


#Recipe 3. Varying box widths by number of observations

metals<-read.csv("metals.csv")

boxplot(Cu ~ Source, data = metals,
        varwidth=TRUE,
        main="Summary of Copper concentrations by Site")



#Recipe 4. Creating box plots with notches

metals<-read.csv("metals.csv")

boxplot(Cu ~ Source, data = metals,
        varwidth=TRUE,
        notch=TRUE,	
        main="Summary of Copper concentrations by Site")


#Recipe 5. Including or excluding outliers

metals<-read.csv("metals.csv")

boxplot(metals[,-1], 
	outline=FALSE,
	main="Summary of metal concentrations by Site \n (without outliers)")



#Recipe 6. Creating horizontal box plots

metals<-read.csv("metals.csv")

boxplot(metals[,-1], 
	horizontal=TRUE,
	las=1,
	main="Summary of metal concentrations by Site")


#Recipe 7. Changing box styling

metals<-read.csv("metals.csv")

boxplot(metals[,-1],
        border = "white",
        col = "black",
        boxwex = 0.3,
        medlwd=1,
        whiskcol="black",
        staplecol="black",
        outcol="red",cex=0.3,outpch=19,
        main="Summary of metal concentrations by Site")

grid(nx=NA,ny=NULL,col="gray",lty="dashed")


#Recipe 8. Adjusting the extent of plot whiskers outside the box

metals<-read.csv("metals.csv")

boxplot(metals[,-1],
	range=1,
        border = "white",
        col = "black",
        boxwex = 0.3,
        medlwd=1,
        whiskcol="black",
        staplecol="black",
        outcol="red",cex=0.3,outpch=19,
        main="Summary of metal concentrations by Site \n (range=1) ")

boxplot(metals[,-1],
	range=0,
        border = "white",
        col = "black",
        boxwex = 0.3,
        medlwd=1,
        whiskcol="black",
        staplecol="black",
        outcol="red",cex=0.3,outpch=19,
        main="Summary of metal concentrations by Site \n (range=0)")


#Recipe 9. Showing number of observations 

metals<-read.csv("metals.csv")

b<-boxplot(metals[,-1],
	  xaxt="n",
        border = "white",
        col = "black",
        boxwex = 0.3,
        medlwd=1,
        whiskcol="black",
        staplecol="black",
        outcol="red",cex=0.3,outpch=19,
        main="Summary of metal concentrations by Site")

axis(side=1,at=1:length(b$names),labels=paste(b$names,"\n(n=",b$n,")",sep=""),mgp=c(3,2,0))


install.packages("gplots")
library(gplots)

boxplot.n(metals[,-1],
        border = "white",
        col = "black",
        boxwex = 0.3,
        medlwd=1,
        whiskcol="black",
        staplecol="black",
        outcol="red",cex=0.3,outpch=19,
        main="Summary of metal concentrations by Site")


#Recipe 10. Splitting a variable at arbitrary values into subsets

metals<-read.csv("metals.csv")

cuts<-c(0,40,80)
Y<-split(x=metals$Cu, f=findInterval(metals$Cu, cuts))

boxplot(Y,
        xaxt="n",            
        border = "white",
        col = "black",
        boxwex = 0.3,
        medlwd=1,           
	whiskcol="black",
        staplecol="black",
        outcol="red",cex=0.3,outpch=19,
        main="Summary of Copper concentrations",
	xlab="Concentration ranges",
	las=1)

axis(1,at=1:length(clabels),
     labels=c("Below 0","0 to 40","40 to 80","Above 80"),      
     lwd=0,lwd.ticks=1,col="gray")



boxplot.cuts<-function(y,cuts) {

Y<-split(metals$Cu, f=findInterval(y, cuts))

b<-boxplot(Y,
           xaxt="n",            
           border = "white",
           col = "black",
           boxwex = 0.3,
           medlwd=1,           
           whiskcol="black",
           staplecol="black",
           outcol="red",cex=0.3,outpch=19,
           main="Summary of Copper concentrations",
           xlab="Concentration ranges",
           las=1)

clabels<-paste("Below",cuts[1])
     
for(k in 1:(length(cuts)-1))
   {
    clabels<-c(clabels, paste(as.character(cuts[k]), "to",as.character(cuts[k+1])))
   }

clabels<-c(clabels, 
           paste("Above",as.character(cuts[length(cuts)])))

axis(1,at=1:length(clabels),
labels=clabels,lwd=0,lwd.ticks=1,col="gray")

}


boxplot.cuts(metals$Cu,c(0,30,60))

boxplot(Cu~Source,data=metals,subset=Cu>40)


#An alternative definition of boxplot.cuts()


boxplot.cuts<-function(y,cuts) {

 	f=cut(y, c(min(y[!is.na(y)]),cuts,max(y[!is.na(y)])), ordered_results=TRUE);
   Y<-split(y, f=f)
 
	b<-boxplot(Y,
   	        xaxt="n",            
      	     border = "white",
         	  col = "black",
              boxwex = 0.3,
	           medlwd=1,           
	           whiskcol="black",
           	  staplecol="black",
              outcol="red",cex=0.3,outpch=19,
              main="Summary of Copper concentrations",
	     		  xlab="Concentration ranges",
	     		  las=1)


	clabels = as.character(levels(f))
axis(1,at=1:length(clabels),
labels=clabels,lwd=0,lwd.ticks=1,col="gray")

}


boxplot.cuts(metals$Cu,c(0,40,80))
#CHAPTER 8
#Recipe 1. Creating heat maps of single Z 

variable with scale

sales<-read.csv("sales.csv")

install.packages("RColorBrewer")
library(RColorBrewer)

rownames(sales)<-sales[,1]
sales<-sales[,-1]
data_matrix<-data.matrix(sales)
	
pal=brewer.pal(7,"YlOrRd")

breaks<-seq(3000,12000,1500)

#Create layout with 1 row and 2 columns 

(for the heatmap and scale); the heatmap 

column is 8 times as wide as the scale 

column

layout(matrix(data=c(1,2), nrow=1, 

ncol=2), widths=c(8,1), heights=c(1,1))

#Set margins for the heatmap
par(mar = c(5,10,4,2),oma=c

(0.2,0.2,0.2,0.2),mex=0.5)           


image(x=1:nrow(data_matrix),y=1:ncol

(data_matrix), 	
      z=data_matrix,
      axes=FALSE,
      xlab="Month",
      ylab="",
      col=pal[1:(length(breaks)-1)], 
      breaks=breaks,
      main="Sales Heat Map")

axis(1,at=1:nrow

(data_matrix),labels=rownames

(data_matrix), col="white",las=1)
           
axis(2,at=1:ncol

(data_matrix),labels=colnames

(data_matrix), col="white",las=1)

abline(h=c(1:ncol(data_matrix))+0.5, 
       v=c(1:nrow(data_matrix))+0.5, 

col="white",lwd=2,xpd=FALSE)

breaks2<-breaks[-length(breaks)]

# Color Scale
par(mar = c(5,1,4,7)) 

# If you get a figure margins error while 

running the above code, enlarge the plot 

device or adjust the margins so that the 

graph and scale fit within the device.

image(x=1, y=0:length(breaks2),z=t

(matrix(breaks2))*1.001,
      col=pal[1:length(breaks)-1],
      axes=FALSE,
      breaks=breaks,
      xlab="", ylab="",
      xaxt="n")

axis(4,at=0:(length(breaks2)-1), 

labels=breaks2, col="white", las=1)

abline(h=c(1:length

(breaks2)),col="white",lwd=2,xpd=F)


#Recipe 2. Creating correlation heat maps

genes<-read.csv("genes.csv")

rownames(genes)<-genes[,1]
data_matrix<-data.matrix(genes[,-1])

pal=heat.colors(5)

breaks<-seq(0,1,0.2)

layout(matrix(data=c(1,2), nrow=1, 

ncol=2), widths=c(8,1), heights=c(1,1))

par(mar = c(3,7,12,2),oma=c

(0.2,0.2,0.2,0.2),mex=0.5)           

image(x=1:nrow(data_matrix),y=1:ncol

(data_matrix),
	   z=data_matrix,
      xlab="",
      ylab="",
      breaks=breaks,
      col=pal,
      axes=FALSE)


text(x=1:nrow(data_matrix)+0.75, y=par

("usr")[4] + 1.25, 
     srt = 45, adj = 1, labels = 

rownames(data_matrix), 
     xpd = TRUE)

axis(2,at=1:ncol

(data_matrix),labels=colnames

(data_matrix),col="white",las=1)

abline(h=c(1:ncol(data_matrix))+0.5,v=c

(1:nrow(data_matrix))

+0.5,col="white",lwd=2,xpd=F)

title("Correlation between 

genes",line=8,adj=0)

breaks2<-breaks[-length(breaks)]

# Color Scale
par(mar = c(25,1,25,7))
image(x=1, y=0:length(breaks2),z=t

(matrix(breaks2))*1.001
      ,col=pal[1:length(breaks)-1]
       ,axes=FALSE
       ,breaks=breaks
      ,xlab="",ylab=""
      ,xaxt="n")

axis(4,at=0:(length

(breaks2)),labels=breaks,col="white",las=

1)
abline(h=c(1:length

(breaks2)),col="white",lwd=2,xpd=FALSE)



#Recipe 3. Summarising multivariate data 

in a single heat map

nba <- read.csv("nba.csv")

library(RColorBrewer)

rownames(nba)<-nba[,1]

data_matrix<-t(scale(data.matrix(nba[,-

1])))

pal=brewer.pal(6,"Blues")

statnames<-c("Games Played", "Minutes 

Played", "Total Points", "Field Goals 

Made", "Field Goals Attempted", "Field 

Goal Percentage", "Free Throws Made", 

"Free Throws Attempted", "Free Throw 

Percentage", "Three Pointers Made", 

"Three Pointers Attempted", "Three Point 

Percentage", "Offensive Rebounds", 

"Defensive Rebounds", "Total Rebounds", 

"Assists", "Steals", "Blocks", 

"Turnovers", "Fouls")

par(mar = c(3,14,19,2),oma=c

(0.2,0.2,0.2,0.2),mex=0.5)

#Heat map          
image(x=1:nrow(data_matrix),y=1:ncol

(data_matrix),
      z=data_matrix,
      xlab="",
      ylab="",
      col=pal,
      axes=FALSE)

#X axis labels
text(1:nrow(data_matrix), par("usr")[4] + 

1, 
     srt = 45, adj = 0, 
     labels = statnames,
     xpd = TRUE, cex=0.85)

#Y axis labels
axis(side=2,at=1:ncol(data_matrix),
     labels=colnames(data_matrix),
     col="white",las=1, cex.axis=0.85)

#White separating lines
abline(h=c(1:ncol(data_matrix))+0.5,
       v=c(1:nrow(data_matrix))+0.5,
       col="white",lwd=1,xpd=F)

#Graph Title
text(par("usr")[1]+5, par("usr")[4] + 12,
     "NBA per game performance of top 

50corers", 
     xpd=TRUE,font=2,cex=1.5)

nba <- nba[order(nba$PTS),]


#Recipe 4. Creating contour plots

contour(x=10*1:nrow(volcano), 

y=10*1:ncol(volcano), z=volcano,
		  xlab="Metres 

West",ylab="Metres North", 
		  main="Topography of 

Maunga Whau Volcano")


par(las=1)

plot(0,0,xlim=c(0,10*nrow

(volcano)),ylim=c(0,10*ncol

(volcano)),type="n",xlab="Metres 

West",ylab="Metres 

North",main="Topography of Maunga Whau 

Volcano")

u<-par("usr")

rect(u[1],u[3],u[2],u

[4],col="lightgreen")

contour(x=10*1:nrow(volcano),y=10*1:ncol

(volcano),
		  

volcano,col="red",add=TRUE)


#Recipe 5. Creating filled contour plots


filled.contour(x = 10*1:nrow(volcano), 
		y = 10*1:ncol(volcano), 
		z = volcano, 

color.palette = terrain.colors, 
		plot.title = title(main = 

"The Topography of Maunga Whau",
	        xlab = "Meters North", 
		ylab = "Meters West"),
		plot.axes = {axis(1, seq

(100, 800, by = 100))
            	axis(2, seq(100, 600, by 

= 100))},
		key.title = title

(main="Height\n(meters)"),
		key.axes = axis(4, seq

(90, 190, by = 10))) 

#Increased detail and smoothness

filled.contour(x = 10*1:nrow(volcano), 
		y = 10*1:ncol(volcano), 
		z = volcano, 
		color.palette = 

terrain.colors, 
		plot.title = title(main = 

"The Topography of Maunga Whau",
		xlab = "Meters North", 
		ylab = "Meters West"),
		nlevels=100,
		plot.axes = {axis(1, seq

(100, 800, by = 100))
            		    axis(2, seq

(100, 600, by = 100))},
		key.title = title

(main="Height\n(meters)"),
		key.axes = axis(4, seq

(90, 190, by = 10))) 


#Recipe 6. Creating 3-dimensional surface 

plots

install.packages("rgl")
library(rgl)

z <- 2 * volcano
x <- 10 * (1:nrow(z))
y <- 10 * (1:ncol(z))

zlim <- range(z)
zlen <- zlim[2] - zlim[1] + 1

colorlut <- terrain.colors(zlen) 
col <- colorlut[ z-zlim[1]+1 ] 

rgl.open()
rgl.surface(x, y, z, color=col, 

back="lines")


#Recipe 7. Visualizing time Series as 

calendar heat maps

source("calendarHeat.R")

stock.data <- read.csv("google.csv")

install.packages("chron")
library("chron")

calendarHeat(dates=stock.data$Date, 
	     values=stock.data$Adj.Close, 
	     varname="Google Adjusted 

Close")


#Using the openair package

install.packages("openair")
library(openair)

calendarPlot(mydata)

mydata$sales<-rnorm(length

(mydata$nox),mean=1000,sd=1500)

calendarPlot

(mydata,pollutant="sales",main="Daily 

Sales in 2003")
#CHAPTER 9
#Recipe 1. Plotting global data by countries on a world map

install.packages("maps")
library(maps)
install.packages("WDI")
library(WDI)
install.packages("RColorBrewer")
library(RColorBrewer)

colors = brewer.pal(7,"PuRd")
wgdp<-WDIsearch("gdp")
w<-WDI(country="all", indicator=wgdp[4,1], start=2005, end=2005)

w[63,1] <-  "USA"

x<-map(plot=FALSE)


x$measure<-array(NA,dim=length(x$names))

for(i in 1:length(w$country)) {

	for(j in 1:length(x$names)) {
		if(grepl(w$country[i],x$names[j],ignore.case=T))
		  x$measure[j]<-w[i,3]
	}

}

sd = data.frame(col=colours,values=seq(min(x$measure[!is.na(x$measure)]),
max(x$measure[!is.na(x$measure)])*1.0001,length.out=7))

#intervals color scheme
sc<-array("#FFFFFF",dim=length(x$names))

for (i in 1:length(x$measure))
	if(!is.na(x$measure[i]))
	sc[i]=as.character(sd$col[findInterval(x$measure[i],sd$values)])

breaks<-sd$values

layout(matrix(data=c(2,1), nrow=1, ncol=2), widths=c(8,1), heights=c(8,1))

# Color Scale first
par(mar = c(20,1,20,7),oma=c(0.2,0.2,0.2,0.2),mex=0.5)           
image(x=1, y=0:length(breaks),z=t(matrix(breaks))*1.001
      ,col=colours[1:length(breaks)-1]
       ,axes=FALSE
       ,breaks=breaks
      ,xlab="",ylab=""
      ,xaxt="n")

axis(4,at=0:(length(breaks)-1),labels=round(breaks),col="white",las=1)
abline(h=c(1:length(breaks)),col="white",lwd=2,xpd=F)


#Map
z<-map(col=sc,fill=TRUE,lty="blank")
map(add=TRUE,col="gray",fill=FALSE)
title("CO2 emissions (kg per 2000 US$ of GDP)")



#Recipe 2. Creating graphs with regional maps

library(maps)
library(RColorBrewer)


x<-map("state",plot=FALSE)

for(i in 1:length(rownames(USArrests))) {
	for(j in 1:length(x$names)) {
	 if(grepl(rownames(USArrests)[i],x$names[j],ignore.case=T))
		  x$measure[j]<-as.double(USArrests$Murder[i])
	}
}

colours <- brewer.pal(7,"Reds")

sd <- data.frame(col=colours,
					values=seq(min(x$measure[!is.na(x$measure)]),
					max(x$measure[!is.na(x$measure)])*1.0001, 
					length.out=7))

breaks<-sd$values

matchcol<-function(y) {
	as.character(sd$col[findInterval(y,sd$values)])
}


layout(matrix(data=c(2,1), nrow=1, ncol=2), 
		 widths=c(8,1),heights=c(8,1))

# Color Scale first
par(mar = c(20,1,20,7),oma=c(0.2,0.2,0.2,0.2),mex=0.5)           
image(x=1, y=0:length(breaks),z=t(matrix(breaks))*1.001
      ,col=colours[1:length(breaks)-1]
       ,axes=FALSE
       ,breaks=breaks
      ,xlab="", ylab="", xaxt="n")
axis(4,at=0:(length(breaks)-1),labels=round(breaks),col="white",las=1)
abline(h=c(1:length(breaks)),col="white",lwd=2,xpd=F)

#Map
map("state", boundary = FALSE, 
		col=matchcol(x$measure), 
		fill=TRUE,lty="blank")

map("state", col="white",add = TRUE)

title("Murder Rates by US State in 1973 \n (arrests per 100,000 residents)", line=2)


map("county", "new york")

map("state", region = c("california", "oregon", "nevada"))	

map('italy', fill = TRUE, col = brewer.pal(7,"Set1"))



install.packages("sp")
library(sp)

load(url("http://gadm.org/data/rda/FRA_adm1.RData"))

gadm$rainfall<-rnorm(length(gadm$NAME_1),mean=50,sd=15)

spplot(gadm,"rainfall", col.regions = rev(terrain.colors(gadm$rainfall)),
		main="Rainfall  (simulated) in French administrative regions")


#Recipe 3. Plotting data on Google maps

install.packages("rgdal")
library(rgdal)

install.packages("RgoogleMaps")
library(RgoogleMaps)

air<-read.csv("londonair.csv")

london<-GetMap(center=c(51.51,-0.116), 
		zoom =10, destfile = "London.png", 
		maptype = "mobile")

PlotOnStaticMap(london,lat = air$lat, lon = air$lon, 
		cex=2,pch=19,col=as.character(air$color))


london<-GetMap(center=c(51.51,-0.116),zoom =10, 
destfile = "London_satellite.png", maptype = "satellite")

PlotOnStaticMap(london,lat = air$lat, lon = air$lon,
		cex=2,pch=19,col=as.character(air$color))


GetMap(center=c(40.714728,-73.99867), zoom =14, 
		 destfile = "Manhattan.png", maptype = "hybrid");


#Using OpenStreetMap
GetMap.OSM(lonR= c(-74.67102, -74.63943), 
			  latR = c(40.33804,40.3556), 
			  scale = 7500, destfile = "PrincetonOSM.png")


#Recipe 4. Creating and reading KML data

install.packages("rgdal")
library(rgdal)
cities <- readOGR(system.file("vectors", 
										package = "rgdal")[1], "cities")

writeOGR(cities, "cities.kml", "cities", driver="KML")

df <- readOGR("cities.kml", "cities")




#Recipe 5. Working with ESRI shapefiles

install.packages("maptools")
library(maptools)

sfdata <- readShapeSpatial(system.file("shapes/sids.shp", package="maptools")[1], 
							  proj4string=CRS("+proj=longlat"))

plot(sfdata, col="orange", border="white", axes=TRUE)

#Output as shapefile
writeSpatialShape(sfdata,"xxpoly")


install.packages("shapefiles")
library(shapefiles)

sf<-system.file("shapes/sids.shp", package="maptools")[1]
sf<-substr(sf,1,nchar(sf)-4)
sfdata <- read.shapefile(sf)

write.shapefile(sfdata, "newsf")
#CHAPTER 10
#Recipe 1. Exporting graphs in high resolution image formats: PNG, JPEG, BMP, TIFF


png("cars.png",res=200,height=600,width=600)

plot(cars$dist~cars$speed,
main="Relationship between car distance and speed",
xlab="Speed (miles per hour)",
ylab="Distance travelled (miles)",
xlim=c(0,30),
ylim=c(0,140),
xaxs="i",
yaxs="i",
col="red",
pch=19)

dev.off()


png("cars.png",res=200,height=600,width=600)

par(mar=c(4,4,3,1),omi=c(0.1,0.1,0.1,0.1),mgp=c(3,0.5,0),
	 las=1,mex=0.5,
	 cex.main=0.6,cex.lab=0.5,cex.axis=0.5)

plot(cars$dist~cars$speed,
main="Relationship between car distance and speed",
xlab="Speed (miles per hour)",
ylab="Distance travelled (miles)",
xlim=c(0,30),
ylim=c(0,140),
xaxs="i",
yaxs="i",
col="red",
pch=19,
cex=0.5)

dev.off()


#Recipe 2. Exporting graphs in vector formats: SVG, PDF, PS

pdf("cars.pdf")

plot(cars$dist~cars$speed,
main="Relationship between car distance and speed",
xlab="Speed (miles per hour)",
ylab="Distance travelled (miles)",
xlim=c(0,30),
ylim=c(0,140),
xaxs="i",
yaxs="i",
col="red",
pch=19,
cex=0.5)

dev.off()


svg("3067_10_03.svg")
#plot command here
dev.off()

postscript("3067_10_03.ps")
#plot command here
dev.off()


#Exporting to SVG for Windows users
install.packages("Cairo")
library(Cairo)
CairoSVG("3067_10_03.svg")
#plot command here
dev.off()


pdf("multiple.pdf")

for(i in 1:3)
  plot(cars,pch=19,col=i)

dev.off()



pdf("multiple.pdf",colormodel=攃myk?

for(i in 1:3)
  plot(cars,pch=19,col=i)

dev.off()




#Recipe 3. Adding Mathematical and scientific notations (typesetting)

plot(air,las=1,
main=expression(paste("Relationship between ",PM[10]," and ",NO[X])),
xlab=expression(paste(NO[X]," concentrations (",mu*g^-3,")")),
ylab=expression(paste(PM[10]," concentrations (",mu*g^-3,")")))


demo(plotmath)


#Recipe 4. Adding text descriptions to graphs


par(mar=c(12,4,3,2))
plot(rnorm(1000),main="Random Normal Distribution")

desc<-expression(paste("The normal distribution has density ",
f(x) == frac(1,sqrt(2*pi)*sigma)~ plain(e)^frac(-(x-mu)^2,2*sigma^2)))

mtext(desc,side=1,line=4,padj=1,adj=0)

mtext(expression(paste("where ", mu, " is the mean of the distribution and ",sigma," the standard deviation.")),side=1,line=7,padj=1,adj=0)



dailysales<-read.csv("dailysales.csv")

par(mar=c(5,5,12,2))

plot(units~as.Date(date,"%d/%m/%y"),data=dailysales,type="l",las=1,ylab="Units Sold",xlab="Date")

desc<-"The graph below shows sales data for Product A in the month of January 2010. There were a lot of ups and downs in the number of units sold. The average number of units sold was around 5000. The highest sales were recorded on the 27th January, nearly 7000 units sold."

mtext(paste(strwrap(desc,width=80),collapse="\n"),side=3,line=3,padj=0,adj=0)

title("Daily Sales Trends",line=10,adj=0,font=2)



#Recipe 5. Using Graph Templates

themeplot<-function(x,theme,...) {
  i<-which(themes$theme==theme)
  par(bg=as.character(themes[i,]$bg_color),las=1)

  plot(x,type="n",...)
  
  u<-par("usr")
  plotcol=as.character(themes[i,]$plot_color)
  rect(u[1],u[3],u[2],u[4],col=plotcol,border=plotcol)
  
  points(x,col=as.character(themes[i,]$symbol_color),...)
  box()
}

themeplot(rnorm(1000),theme="white",pch=21,main="White")
themeplot(rnorm(1000),theme="lightgray",pch=21,main="Light Gray")
themeplot(rnorm(1000),theme="dark",pch=21,main="Dark")
themeplot(rnorm(1000),theme="pink",pch=21,main="Pink")






#Recipe 6. Choosing font families and styles under Windows, OS X and Linux

par(mar=c(1,1,5,1))
plot(1:200,type="n",main="Fonts under Windows",axes=FALSE,xlab="",ylab="")

text(0,180,"Arial \n(family=\"sans\", font=1)", 
	  family="sans",font=1,adj=0)
text(0,140,"Arial Bold \n(family=\"sans\", font=2)", 
	  family="sans",font=2,adj=0)
text(0,100,"Arial Italic \n(family=\"sans\", font=3)", 
	  family="sans",font=3,adj=0)
text(0,60,"Arial Bold Italic \n(family=\"sans\", font=4)", 
	  family="sans",font=4,adj=0)

text(70,180,"Times \n(family=\"serif\", font=1)", 
	  family="serif",font=1,adj=0)
text(70,140,"Times Bold \n(family=\"serif\", font=2)", 
	  family="serif",font=2,adj=0)
text(70,100,"Times Italic \n(family=\"serif\", font=3)", 
	  family="serif",font=3,adj=0)
text(70,60,"Times Bold Italic \n(family=\"serif\", font=4)", 
	  family="serif",font=4,adj=0)

text(130,180,"Courier New\n(family=\"mono\", font=1)",
	  family="mono",font=1,adj=0)
text(130,140,"Courier New Bold \n(family=\"mono\", font=2)", 
	  family="mono",font=2,adj=0)
text(130,100,"Courier New Italic \n(family=\"mono\", font=3)",
	  family="mono",font=3,adj=0)
text(130,60,"Courier New Bold Italic \n(family=\"mono\", font=4)", 
	  family="mono",font=4,adj=0)



windowsFonts(GE = windowsFont("Georgia"))

text(150,80,"Georgia",family="GE")


#Recipe 7. Choosing fonts for PostScripts and PDFs

pdf("fonts.pdf",family="AvantGarde")
plot(rnorm(100),main="Random Normal Distribution")
dev.off()


postscript("fonts.ps",family="AvantGarde")
plot(rnorm(100),main="Random Normal Distribution")
dev.off()


names(pdfFonts())

看完上述内容,你们掌握R Graph Cookbook 代码怎么写的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!


文章题目:RGraphCookbook代码怎么写
标题来源:http://cqcxhl.cn/article/gsidps.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP