重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

go语言关闭gc,为什么用go语言

Golang实验性功能SetMaxHeap 固定值GC

简单来说, SetMaxHeap 提供了一种可以设置固定触发阈值的 GC (Garbage Collection垃圾回收)方式

创新互联建站专注于盐亭企业网站建设,自适应网站建设,商城网站建设。盐亭网站建设公司,为盐亭等地区提供建站服务。全流程定制开发,专业设计,全程项目跟踪,创新互联建站专业和态度为您提供的服务

官方源码链接

大量临时对象分配导致的 GC 触发频率过高, GC 后实际存活的对象较少,

或者机器内存较充足,希望使用剩余内存,降低 GC 频率的场景

GC 会 STW ( Stop The World ),对于时延敏感场景,在一个周期内连续触发两轮 GC ,那么 STW 和 GC 占用的 CPU 资源都会造成很大的影响, SetMaxHeap 并不一定是完美的,在某些场景下做了些权衡,官方也在进行相关的实验,当前方案仍没有合入主版本。

先看下如果没有 SetMaxHeap ,对于如上所述的场景的解决方案

这里简单说下 GC 的几个值的含义,可通过 GODEBUG=gctrace=1 获得如下数据

这里只关注 128-132-67 MB 135 MB goal ,

分别为 GC开始时内存使用量 - GC标记完成时内存使用量 - GC标记完成时的存活内存量 本轮GC标记完成时的 预期 内存使用量(上一轮 GC 完成时确定)

引用 GC peace设计文档 中的一张图来说明

对应关系如下:

简单说下 GC pacing (信用机制)

GC pacing 有两个目标,

那么当一轮 GC 完成时,如何只根据本轮 GC 存活量去实现这两个小目标呢?

这里实际是根据当前的一些数据或状态去 预估 “未来”,所有会存在些误差

首先确定 gc Goal goal = memstats.heap_marked + memstats.heap_marked*uint64(gcpercent)/100

heap_marked 为本轮 GC 存活量, gcpercent 默认为 100 ,可以通过环境变量 GOGC=100 或者 debug.SetGCPercent(100) 来设置

那么默认情况下 goal = 2 * heap_marked

gc_trigger 是与 goal 相关的一个值( gc_trigger 大约为 goal 的 90% 左右),每轮 GC 标记完成时,会根据 |Ha-Hg| 和实际使用的 cpu 资源 动态调整 gc_trigger 与 goal 的差值

goal 与 gc_trigger 的差值即为,为 GC 期间分配的对象所预留的空间

GC pacing 还会预估下一轮 GC 发生时,需要扫描对象对象的总量,进而换算为下一轮 GC 所需的工作量,进而计算出 mark assist 的值

本轮 GC 触发( gc_trigger ),到本轮的 goal 期间,需要尽力完成 GC mark 标记操作,所以当 GC 期间,某个 goroutine 分配大量内存时,就会被拉去做 mark assist 工作,先进行 GC mark 标记赚取足够的信用值后,才能分配对应大小的对象

根据本轮 GC 存活的内存量( heap_marked )和下一轮 GC 触发的阈值( gc_trigger )计算 sweep assist 的值,本轮 GC 完成,到下一轮 GC 触发( gc_trigger )时,需要尽力完成 sweep 清扫操作

预估下一轮 GC 所需的工作量的方式如下:

继续分析文章开头的问题,如何充分利用剩余内存,降低 GC 频率和 GC 对 CPU 的资源消耗

如上图可以看出, GC 后,存活的对象为 2GB 左右,如果将 gcpercent 设置为 400 ,那么就可以将下一轮 GC 触发阈值提升到 10GB 左右

前面一轮看起来很好,提升了 GC 触发的阈值到 10GB ,但是如果某一轮 GC 后的存活对象到达 2.5GB 的时候,那么下一轮 GC 触发的阈值,将会超过内存阈值,造成 OOM ( Out of Memory ),进而导致程序崩溃。

可以通过 GOGC=off 或者 debug.SetGCPercent(-1) 来关闭 GC

可以通过进程外监控内存使用状态,使用信号触发的方式通知程序,或 ReadMemStats 、或 linkname runtime.heapRetained 等方式进行堆内存使用的监测

可以通过调用 runtime.GC() 或者 debug.FreeOSMemory() 来手动进行 GC 。

这里还需要说几个事情来解释这个方案所存在的问题

通过 GOGC=off 或者 debug.SetGCPercent(-1) 是如何关闭 GC 的?

gc 4 @1.006s 0%: 0.033+5.6+0.024 ms clock, 0.27+4.4/11/25+0.19 ms cpu, 428-428-16 MB, 17592186044415 MB goal, 8 P (forced)

通过 GC trace 可以看出,上面所说的 goal 变成了一个很诡异的值 17592186044415

实际上关闭 GC 后, Go 会将 goal 设置为一个极大值 ^uint64(0) ,那么对应的 GC 触发阈值也被调成了一个极大值,这种处理方式看起来也没什么问题,将阈值调大,预期永远不会再触发 GC

那么如果在关闭 GC 的情况下,手动调用 runtime.GC() 会导致什么呢?

由于 goal 和 gc_trigger 被设置成了极大值, mark assist 和 sweep assist 也会按照这个错误的值去计算,导致工作量预估错误,这一点可以从 trace 中进行证明

可以看到很诡异的 trace 图,这里不做深究,该方案与 GC pacing 信用机制不兼容

记住,不要在关闭 GC 的情况下手动触发 GC ,至少在当前 Go1.14 版本中仍存在这个问题

SetMaxHeap 的实现原理,简单来说是强行控制了 goal 的值

注: SetMaxHeap ,本质上是一个软限制,并不能解决 极端场景 下的 OOM ,可以配合内存监控和 debug.FreeOSMemory() 使用

SetMaxHeap 控制的是堆内存大小, Go 中除了堆内存还分配了如下内存,所以实际使用过程中,与实际硬件内存阈值之间需要留有一部分余量。

对于文章开始所述问题,使用 SetMaxHeap 后,预期的 GC 过程大概是这个样子

简单用法1

该方法简单粗暴,直接将 goal 设置为了固定值

注:通过上文所讲,触发 GC 实际上是 gc_trigger ,所以当阈值设置为 12GB 时,会提前一点触发 GC ,这里为了描述方便,近似认为 gc_trigger=goal

简单用法2

当不关闭 GC 时, SetMaxHeap 的逻辑是, goal 仍按照 gcpercent 进行计算,当 goal 小于 SetMaxHeap 阈值时不进行处理;当 goal 大于 SetMaxHeap 阈值时,将 goal 限制为 SetMaxHeap 阈值

注:通过上文所讲,触发 GC 实际上是 gc_trigger ,所以当阈值设置为 12GB 时,会提前一点触发 GC ,这里为了描述方便,近似认为 gc_trigger=goal

切换到 go1.14 分支,作者选择了 git checkout go1.14.5

选择官方提供的 cherry-pick 方式(可能需要梯子,文件改动不多,我后面会列出具体改动)

git fetch "" refs/changes/67/227767/3 git cherry-pick FETCH_HEAD

需要重新编译Go源码

注意点:

下面源码中的官方注释说的比较清楚,在一些关键位置加入了中文注释

入参bytes为要设置的阈值

notify 简单理解为 GC 的策略 发生变化时会向 channel 发送通知,后续源码可以看出“策略”具体指哪些内容

返回值为本次设置之前的 MaxHeap 值

$GOROOT/src/runtime/debug/garbage.go

$GOROOT/src/runtime/mgc.go

注:作者尽量用通俗易懂的语言去解释 Go 的一些机制和 SetMaxHeap 功能,可能有些描述与实现细节不完全一致,如有错误还请指出

Golang的垃圾回收

最近垃圾分类的话题热度一下子就上去了,很多人因为垃圾分类的问题很头痛。因为垃圾这个话题,那我就想来说说Golang里面的垃圾,于是就有了这篇博客,golang中的垃圾回收。

现阶段网上针对golang垃圾回收的解析已经很多了,所以我也没有必要仔仔细细的一点点说,还是那个原则,用最直白的话告诉你,垃圾到底是怎么收的。

首先本文后续都会使用 GC 代替垃圾回收这几个字。

我们知道创建对象会给他分配内存资源,如果这个对象不使用了,而这个内存资源却一直被占用的话,那么我们的电脑很快就会被放满,所以需要将这些垃圾对象进行回收。

要回收,那么我们必须知道什么才是垃圾,什么不是垃圾。

在我们看来,一个对象以后都不用了,就是垃圾。

在程序看来,一个对象没有被引用了,就是垃圾。

首先说明一下,下面说的停,都是STW,stop the world,全世界暂停,所有运行的都停下来了。

先告诉所有人,停一下,我来记录一下当前状态。

告诉所有人,你们继续,该干嘛干嘛,我标记一下要用的对象

一开始所有点是白色,首先从根节点出发,标记相连的点为灰色(相连证明有引用),并且将所有灰色的点存起来;

告诉所有人,再停一下,在第二个过程中,因为所有人继续在工作,那么就会产生新的垃圾,因为第一个过程记录了状态,所以需要标记一下新的垃圾;然后清除所有白色的点,因为白色的点是没人引用的,也就是垃圾。

你一定会有这样的疑问:

那么既然会导致那么多问题,为什么不直接停下来,标记完回收完了再开始呢?

因为慢~

所以这样GC的原因是既要保证GC正常执行,又要保证效率,不能停的时间太长。

其实第一次停的时候,启动了一个写屏障 (write barrier)它需要记录后续过程中新创建的对象

这个过程称为三色标记,有点类似广度优先搜索。

这次是必须停,因为在第二个过程中引用会发生变化,从而需要停止后重新扫描一遍;然后关闭写屏障,最后再清理。

开启写屏障时需要stw

关闭写屏障前需要stw

开启写屏障之后的标记过程与其他程序并发执行

关闭写屏障之后的清扫过程与其他程序并发执行

那毕竟GC还是需要STW的,虽然可能停止时间很短,但是对于程序来说,整个程序停止1秒那对于用户来说就是致命打击。所以GC肯定需要一个触发的条件,不能想来就来。

这是一个触发的条件,默认GC百分比设置的是100,意思是,如果这次回收之后总共占用2M的内存,那么下次触发的条件时当超过4M的时候;同理,当这次回收之后总共占用4M,那么下次触发条件就是8M。

这个简单,当一定时间(2分钟)没有执行过GC就触发GC

使用命令 runtime.GC() 手动触发GC

以上就是在golang中垃圾回收的大致流程,总的来说使用三色标记法进行标记清除,并且标记时与程序运行并行,为了解决问题使用写屏障来记录标记过程中对象的变更。总来的来说也是为了提高垃圾回收的效率,并且尽可能的减少STW的时间。

了解下来,与java的分代回收相比,golang中的回收算法理解起来更加简单一些。

驳狗屎文 "我为什么放弃Go语言

此篇文章流传甚广, 其实里面没啥干货, 而且里面很多观点是有问题的. 这个文章在 golang-china 很早就讨论过了.

最近因为 Rust 1.0 和 1.1 的发布, 导致这个文章又出来毒害读者.

所以写了这篇反驳文章, 指出其中的问题.

有好几次,当我想起来的时候,总是会问自己:我为什么要放弃Go语言?这个决定是正确的吗?是明智和理性的吗?其实我一直在认真思考这个问题。

开门见山地说,我当初放弃Go语言(golang),就是因为两个“不爽”:第一,对Go语言本身不爽;第二,对Go语言社区里的某些人不爽。毫无疑问,这是非常主观的结论。但是我有足够详实的客观的论据,用以支撑这个看似主观的结论。

文末附有本文更新日志。

确实是非常主观的结论, 因为里面有不少有问题的观点(用来忽悠Go小白还行).

第0节:我的Go语言经历

先说说我的经历吧,以避免被无缘无故地当作Go语言的低级黑。

2009年底,Go语言(golang)第一个公开版本发布,笼罩着“Google公司制造”的光环,吸引了许多慕名而来的尝鲜者,我(Liigo)也身居其中,笼统的看了一些Go语言的资料,学习了基础的教程,因对其语法中的分号和花括号不满,很快就遗忘掉了,没拿它当一回事。

在2009年Go刚发布时, 确实是因为“Google公司制造”的光环而吸引了(包括文章作者和诸多IT记者)很多低级的尝鲜者.

还好, 经过5年的发展, 这些纯粹因为光环来的投机者所剩已经不多了(Google趋势).

目前, 真正的Go用户早就将Go用于实际的生产了.

说到 其语法中的分号和花括号不满, 我想说这只是你的 个人主观感受, 还有很多人对Go的分号和花括号很满意,

包括水果公司的的 Swift 的语言设计者也很满意这种风格(Swift中的分号和花括号和Go基本相同).

如果只谈 个人主观感受, 我也可以说 Rust 的 fn 缩写也很蛋疼!

两年之后,2011年底,Go语言发布1.0的计划被提上日程,相关的报道又多起来,我再次关注它,重新评估之后决定深入参与Go语言。我订阅了其users、nuts、dev、commits等官方邮件组,坚持每天阅读其中的电子邮件,以及开发者提交的每一次源代码更新,给Go提交了许多改进意见,甚至包括修改Go语言编译器源代码直接参与开发任务。如此持续了数月时间。

这个到是事实, 在 golang-china 有不少吵架的帖子, 感兴趣的可以去挖下, 我就不展开说了.

到2012年初,Go 1.0发布,语言和标准库都已经基本定型,不可能再有大幅改进,我对Go语言未能在1.0定型之前更上一个台阶、实现自我突破,甚至带着诸多明显缺陷走向1.0,感到非常失望,因而逐渐疏远了它(所以Go 1.0之后的事情我很少关心)。后来看到即将发布的Go 1.1的Release Note,发现语言层面没有太大改变,只是在库和工具层面有所修补和改进,感到它尚在幼年就失去成长的动力,越发失望。外加Go语言社区里的某些人,其中也包括Google公司负责开发Go语言的某些人,其态度、言行,让我极度厌恶,促使我决绝地离弃Go语言。

真的不清楚楼主说的可以在 Go1.0 之前短时间内能实现的 重大改进和诸多明显缺陷 是什么.

如果是楼主说前面的 其语法中的分号和花括号不满 之类的重大改进, 我只能说这只是你的 个人主观感受 而已,

你的很多想法只能说服你自己, 没办法说服其他绝大部分人(不要以为像C++或Rust那样什么特性都有就NB了, 各种NB特性加到一起只能是 要你命3000, 而绝对不会是什么 银弹).

Go 1.1的Release Note,发现语言层面没有太大改变. 语言层没有改变是是因为 Go1 作出的向后兼容的承诺. 对于工业级的语言来说, Go1 这个只能是优点. 如果连语言层在每个版本都会出现诸多大幅改进, 那谁还敢用Go语言来做生产开发呢(我承认Rust的改动很大胆, 但也说明了Rust还处于比较幼稚和任性的阶段)?

说 Go语言社区里的某些人固执 的观点我是同意的. 但是这些 固执 的人是可以讲道理的, 但是他们对很多东西的要求很高(特别是关于Go的设计哲学部分).

只要你给的建议有依据(语言的设计哲学是另外一回事情), 他们绝对不会盲目的拒绝(只是讨论的周期会比较长).

关于楼主提交的给Go文件添加BOM的文章, 需要补充说明下.

在Go1.0发布的时候, Go语言的源文件(.go)明确要求必须是UTF8编码的, 而且是无BOM的UTF8编码的.

注意: 这个 无BOM的UTF8编码 的限制仅仅是 针对 Go语言的源文件(.go).

这个限制并不是说不允许用户处理带BOM的UTF8的txt文件!

我觉得对于写Go程序来说, 这个限制是没有任何问题的, 到目前为止, 我还从来没有使用过带BOM的.go文件.

不仅是因为带BOM的.go文件没有太多的意义, 而且有很多的缺陷.

BOM的原意是用来表示编码是大端还是小端的, 主要用于UTF16和UTF32. 对于 UTF8 来说, BOM 没有任何存在的意义(正是Go的2个作者发明了UTF8, 彻底解决了全球的编码问题).

但是, 在现实中, 因为MS的txt记事本, 对于中文环境会将txt(甚至是C/C++源文件)当作GBK编码(GBK是个烂编码),

为了区别到底是GBK还是UTF8, MS的记事本在前面加了BOM这个垃圾(被GBK占了茅坑), 这里的bom已经不是表示字节序本意了. 不知道有没有人用ms的记事本写网页, 然后生成一个带bom的utf8网页肯定很有意思.

这是MS的记事本的BUG: 它不支持生成无BOM的UTF8编码的文本文件!

这些是现实存在的带BOM的UTF8编码的文本文件, 但是它们肯定都不是Go语言源文件!

所以说, Go语言的源文件即使强制限制了无BOM的UTF8编码要求, 也是没有任何问题的(而且我还希望有这个限制).

虽然后来Go源文件接受带BOM的UTF8了, 但是运行 go fmt 之后, 还是会删除掉BOM的(因为BOM就是然并卵). 也就是说 带 BOM 的 Go 源文件是不符合 Go语言的编码风格的, go fmt 会强制删除 BOM 头.

前面说了BOM是MS带来的垃圾, 但是BOM的UTF8除了然并卵之外还有很多问题, 因为BOM在string的开头嵌入了垃圾,

导致正则表达式, string的链接运算等操作都被会被BOM这个垃圾所污染. 对于.go语言, 即使代码完全一样, 有BOM和无BOM会导致文件的MD5之类的校验码不同.

所以, 我觉得Go用户不用纠结BOM这个无关紧要的东西.

在上一个10年,我(Liigo)在我所属的公司里,深度参与了两个编程语言项目的开发。我想,对于如何判断某个编程语言的优劣,或者说至少对于如何判断某个编程语言是否适合于我自己,我应该还是有一点发言权的。

第1节:我为什么对Go语言不爽?

Go语言有很多让我不爽之处,这里列出我现在还能记起的其中一部分,排名基本上不分先后。读者们耐心地看完之后,还能淡定地说一句“我不在乎”吗?

1.1 不允许左花括号另起一行

关于对花括号的摆放,在C语言、C++、Java、C#等社区中,十余年来存在持续争议,从未形成一致意见。在我看来,这本来就是主观倾向很重的抉择,不违反原则不涉及是非的情况下,不应该搞一刀切,让程序员或团队自己选择就足够了。编程语言本身强行限制,把自己的喜好强加给别人,得不偿失。无论倾向于其中任意一种,必然得罪与其对立的一群人。虽然我现在已经习惯了把左花括号放在行尾,但一想到被禁止其他选择,就感到十分不爽。Go语言这这个问题上,没有做到“团结一切可以团结的力量”不说,还有意给自己树敌,太失败了。

我觉得Go最伟大的发明是 go fmt, 从此Go用户不会再有花括弧的位置这种无聊争论了(当然也少了不少灌水和上tiobe排名的机会).

是这优点, Swift 语言也使用和 Go 类似的风格(当然楼主也可能鄙视swift的作者).

1.2 编译器莫名其妙地给行尾加上分号

对Go语言本身而言,行尾的分号是可以省略的。但是在其编译器(gc)的实现中,为了方便编译器开发者,却在词法分析阶段强行添加了行尾的分号,反过来又影响到语言规范,对“怎样添加分号”做出特殊规定。这种变态做法前无古人。在左花括号被意外放到下一行行首的情况下,它自动在上一行行尾添加的分号,会导致莫名其妙的编译错误(Go 1.0之前),连它自己都解释不明白。如果实在处理不好分号,干脆不要省略分号得了;或者,Scala和JavaScript的编译器是开源的,跟它们学学怎么处理省略行尾分号可以吗?

又是楼主的 个人主观感受, 不过我很喜欢这个特性. Swift 语言也是类似.

1.3 极度强调编译速度,不惜放弃本应提供的功能

程序员是人不是神,编码过程中免不了因为大意或疏忽犯一些错。其中有一些,是大家集体性的很容易就中招的错误(Go语言里的例子我暂时想不起来,C++里的例子有“基类析构函数不是虚函数”)。这时候编译器应该站出来,多做一些检查、约束、核对性工作,尽量阻止常规错误的发生,尽量不让有潜在错误的代码编译通过,必要时给出一些警告或提示,让程序员留意。编译器不就是机器么,不就是应该多做脏活累活杂活、减少人的心智负担么?编译器多做一项检查,可能会避免数十万程序员今后多年内无数次犯同样的错误,节省的时间不计其数,这是功德无量的好事。但是Go编译器的作者们可不这么想,他们不愿意自己多花几个小时给编译器增加新功能,觉得那是亏本,反而减慢了编译速度。他们以影响编译速度为由,拒绝了很多对编译器改进的要求。典型的因噎废食。强调编译速度固然值得赞赏,但如果因此放弃应有的功能,我不赞成。

编译速度是很重要的, 如果编译速度够慢, 语言再好也不会有人使用的.

比如C/C++的增量编译/预编译头文件/并发编译都是为了提高编译速度.

Rust1.1 也号称 比 1.0 的编译时间减少了32% (注意: 不是运行速度).

当然, Go刚面世的时候, 编译速度是其中的一个设计目标.

不过我想楼主, 可能想说的是因为编译器自己添加分号而导致的编译错误的问题.

我觉得Go中 { 不能另起一行是语言特性, 如果修复这个就是引入了新的错误.

其他的我真想不起来还有哪些 调编译速度,不惜放弃本应提供的功能 (不要提泛型, 那是因为还没有好的设计).

1.4 错误处理机制太原始

在Go语言中处理错误的基本模式是:函数通常返回多个值,其中最后一个值是error类型,用于表示错误类型极其描述;调用者每次调用完一个函数,都需要检查这个error并进行相应的错误处理:if err != nil { /*这种代码写多了不想吐么*/ }。此模式跟C语言那种很原始的错误处理相比如出一辙,并无实质性改进。实际应用中很容易形成多层嵌套的if else语句,可以想一想这个编码场景:先判断文件是否存在,如果存在则打开文件,如果打开成功则读取文件,如果读取成功再写入一段数据,最后关闭文件,别忘了还要处理每一步骤中出现错误的情况,这代码写出来得有多变态、多丑陋?实践中普遍的做法是,判断操作出错后提前return,以避免多层花括号嵌套,但这么做的后果是,许多错误处理代码被放在前面突出的位置,常规的处理逻辑反而被掩埋到后面去了,代码可读性极差。而且,error对象的标准接口只能返回一个错误文本,有时候调用者为了区分不同的错误类型,甚至需要解析该文本。除此之外,你只能手工强制转换error类型到特定子类型(静态类型的优势没了)。至于panic - recover机制,致命的缺陷是不能跨越库的边界使用,注定是一个半成品,最多只能在自己的pkg里面玩一玩。Java的异常处理虽然也有自身的问题(比如Checked Exceptions),但总体上还是比Go的错误处理高明很多。

话说, 软件开发都发展了半个世纪, 还是无实质性改进. 不要以为弄一个异常的语法糖就是革命了.

我只能说错误和异常是2个不同的东西, 将所有错误当作异常那是SB行为.

正因为有异常这个所谓的银弹, 导致很多等着别人帮忙擦屁股的行为(注意 shit 函数抛出的绝对不会是一种类型的 shit, 而被其间接调用的各种 xxx_shit 也可能抛出各种类型的异常, 这就导致 catch 失控了):

int main() {

try {

shit();

} catch( /* 到底有几千种 shit ? */) {

...

}

}

Go的建议是 panic - recover 不跨越边界, 也就是要求正常的错误要由pkg的处理掉.

这是负责任的行为.

再说Go是面向并发的编程语言, 在海量的 goroutine 中使用 try/catch 是不是有一种不伦不类的感觉呢?

1.5 垃圾回收器(GC)不完善、有重大缺陷

在Go 1.0前夕,其垃圾回收器在32位环境下有内存泄漏,一直拖着不肯改进,这且不说。Go语言垃圾回收器真正致命的缺陷是,会导致整个进程不可预知的间歇性停顿。像某些大型后台服务程序,如游戏服务器、APP容器等,由于占用内存巨大,其内存对象数量极多,GC完成一次回收周期,可能需要数秒甚至更长时间,这段时间内,整个服务进程是阻塞的、停顿的,在外界看来就是服务中断、无响应,再牛逼的并发机制到了这里统统失效。垃圾回收器定期启动,每次启动就导致短暂的服务中断,这样下去,还有人敢用吗?这可是后台服务器进程,是Go语言的重点应用领域。以上现象可不是我假设出来的,而是事实存在的现实问题,受其严重困扰的也不是一家两家了(2013年底ECUG Con 2013,京东的刘奇提到了Go语言的GC、defer、标准库实现是性能杀手,最大的痛苦是GC;美团的沈锋也提到Go语言的GC导致后台服务间隔性停顿是最大的问题。更早的网络游戏仙侠道开发团队也曾受Go垃圾回收的沉重打击)。在实践中,你必须努力减少进程中的对象数量,以便把GC导致的间歇性停顿控制在可接受范围内。除此之外你别无选择(难道你还想自己更换GC算法、甚至砍掉GC?那还是Go语言吗?)。跳出圈外,我近期一直在思考,一定需要垃圾回收器吗?没有垃圾回收器就一定是历史的倒退吗?(可能会新写一篇博客文章专题探讨。)

这是说的是32位系统, 这绝对不是Go语言的重点应用领域!! 我可以说Go出生就是面向64位系统和多核心CPU环境设计的. (再说 Rust 目前好像还不支持 XP 吧, 这可不可以算是影响巨大?)

32位当时是有问题, 但是对实际生产影响并不大(请问楼主还是在用32位系统吗, 还只安装4GB的内存吗). 如果是8位单片机环境, 建议就不要用Go语言了, 直接C语言好了.

而且这个问题早就不存在了(大家可以去看Go的发布日志).

Go的出生也就5年时间, GC的完善和改进是一个持续的工作, 2015年8月将发布的 Go1.5将采用并行GC.

关于GC的被人诟病的地方是会导致卡顿, 但是我以为这个主要是因为GC的实现还不够完美而导致的.

如果是完美的并发和增量的GC, 那应该不会出现大的卡顿问题的.

当然, 如果非要实时性, 那用C好了(实时并不表示性能高, 只是响应时间可控).

对于Rust之类没有GC的语言来说, 想很方便的开发并发的后台程序那几乎是不可能的.

不要总是吹Rust能代替底层/中层/上层的开发, 我们要看有谁用Rust真的做了什么.

1.6 禁止未使用变量和多余import

Go编译器不允许存在被未被使用的变量和多余的import,如果存在,必然导致编译错误。但是现实情况是,在代码编写、重构、调试过程中,例如,临时性的注释掉一行代码,很容易就会导致同时出现未使用的变量和多余的import,直接编译错误了,你必须相应的把变量定义注释掉,再翻页回到文件首部把多余的import也注释掉,……等事情办完了,想把刚才注释的代码找回来,又要好几个麻烦的步骤。还有一个让人蛋疼的问题,编写数据库相关的代码时,如果你import某数据库驱动的pkg,它编译给你报错,说不需要import这个未被使用的pkg;但如果你听信编译器的话删掉该import,编译是通过了,运行时必然报错,说找不到数据库驱动;你看看程序员被折腾的两边不是人,最后不得不请出大神:import _。对待这种问题,一个比较好的解决方案是,视其为编译警告而非编译错误。但是Go语言开发者很固执,不容许这种折中方案。

这个问题我只能说楼主的吐槽真的是没水平.

为何不使用的是错误而不是警告? 这是为了将低级的bug消灭在编译阶段(大家可以想下C/C++的那么多警告有什么卵用).

而且, import 即使没有使用的话, 也是用副作用的, 因为 import 会导致 init 和全局变量的初始化.

如果某些代码没有使用, 为何要执行 init 这些初始化呢?

如果是因为调试而添加的变量, 那么调试完删除不是很正常的要求吗?

如果是因为调试而要导入fmt或log之类的包, 删除调试代码后又导致 import 错误的花,

楼主难道不知道在一个独立的文件包装下类似的辅助调试的函数吗?

import (

"fmt"

"log"

)

func logf(format string, a ...interface{}) {

file, line := callerFileLine()

fmt.Fprintf(os.Stderr, "%s:%d: ", file, line)

fmt.Fprintf(os.Stderr, format, a...)

}

func fatalf(format string, a ...interface{}) {

file, line := callerFileLine()

fmt.Fprintf(os.Stderr, "%s:%d: ", file, line)

fmt.Fprintf(os.Stderr, format, a...)

os.Exit(1)

}

import _ 是有明确行为的用法, 就是为了执行包中的 init 等函数(可以做某些注册操作).

将警告当作错误是Go的一个哲学, 当然在楼主看来这是白痴做法.

1.7 创建对象的方式太多令人纠结

创建对象的方式,调用new函数、调用make函数、调用New方法、使用花括号语法直接初始化结构体,你选哪一种?不好选择,因为没有一个固定的模式。从实践中看,如果要创建一个语言内置类型(如channel、map)的对象,通常用make函数创建;如果要创建标准库或第三方库定义的类型的对象,首先要去文档里找一下有没有New方法,如果有就最好调用New方法创建对象,如果没有New方法,则退而求其次,用初始化结构体的方式创建其对象。这个过程颇为周折,不像C++、Java、C#那样直接new就行了。

C++的new是狗屎. new导致的问题是构造函数和普通函数的行为不一致, 这个补丁特性真的没啥优越的.

我还是喜欢C语言的 fopen 和 malloc 之类构造函数, 构造函数就是普通函数, Go语言中也是这样.

C++中, 除了构造不兼容普通函数, 析构函数也是不兼容普通函数. 这个而引入的坑有很多吧.

1.8 对象没有构造函数和析构函数

没有构造函数还好说,毕竟还有自定义的New方法,大致也算是构造函数了。没有析构函数就比较难受了,没法实现RAII。额外的人工处理资源清理工作,无疑加重了程序员的心智负担。没人性啊,还嫌我们程序员加班还少吗?C++里有析构函数,Java里虽然没有析构函数但是有人家finally语句啊,Go呢,什么都没有。没错,你有个defer,可是那个defer问题更大,详见下文吧。

defer 可以覆盖析构函数的行为, 当然 defer 还有其他的任务. Swift2.0 也引入了一个简化版的 defer 特性.

1.9 defer语句的语义设定不甚合理

Go语言设计defer语句的出发点是好的,把释放资源的“代码”放在靠近创建资源的地方,但把释放资源的“动作”推迟(defer)到函数返回前执行。遗憾的是其执行时机的设置似乎有些不甚合理。设想有一个需要长期运行的函数,其中有无限循环语句,在循环体内不断的创建资源(或分配内存),并用defer语句确保释放。由于函数一直运行没有返回,所有defer语句都得不到执行,循环过程中创建的大量短暂性资源一直积累着,得不到回收。而且,系统为了存储defer列表还要额外占用资源,也是持续增加的。这样下去,过不了多久,整个系统就要因为资源耗尽而崩溃。像这类长期运行的函数,http.ListenAndServe()就是典型的例子。在Go语言重点应用领域,可以说几乎每一个后台服务程序都必然有这么一类函数,往往还都是程序的核心部分。如果程序员不小心在这些函数中使用了defer语句,可以说后患无穷。如果语言设计者把defer的语义设定为在所属代码块结束时(而非函数返回时)执行,是不是更好一点呢?可是Go 1.0早已发布定型,为了保持向后兼容性,已经不可能改变了。小心使用defer语句!一不小心就中招。

前面说到 defer 还有其他的任务, 也就是 defer 中执行的 recover 可以捕获 panic 抛出的异常.

还有 defer 可以在 return 之后修改命名的返回值.

上面2个工作要求 defer 只能在函数退出时来执行.

楼主说的 defer 是类似 Swift2.0 中 defer 的行为, 但是 Swift2.0 中 defer 是没有前面2个特性的.

Go中的defer是以函数作用域作为触发的条件的, 是会导致楼主说的在 for 中执行的错误用法(哪个语言没有坑呢?).

不过 for 中 局部 defer 也是有办法的 (Go中的defer是以函数作用域):

for {

func(){

f, err := os.Open(...)

defer f.Close()

}()

}

在 for 中做一个闭包函数就可以了. 自己不会用不要怪别人没告诉你.

1.10 许多语言内置设施不支持用户定义的类型

for in、make、range、channel、map等都仅支持语言内置类型,不支持用户定义的类型(?)。用户定义的类型没法支持for in循环,用户不能编写像make、range那样“参数类型和个数”甚至“返回值类型和个数”都可变的函数,不能编写像channel、map那样类似泛型的数据类型。语言内置的那些东西,处处充斥着斧凿的痕迹。这体现了语言设计的局限性、封闭性、不完善,可扩展性差,像是新手作品——且不论其设计者和实现者如何权威。延伸阅读:Go语言是30年前的陈旧设计思想,用户定义的东西几乎都是二等公民(Tikhon Jelvis)。

说到底, 这个是因为对泛型支持的不完备导致的.

Go语言是没啥NB的特性, 但是Go的特性和工具组合在一起就是好用.

这就是Go语言NB的地方.

1.11 没有泛型支持,常见数据类型接口丑陋

没有泛型的话,List、Set、Tree这些常见的基础性数据类型的接口就只能很丑陋:放进去的对象是一个具体的类型,取出来之后成了无类型的interface{}(可以视为所有类型的基础类型),还得强制类型转换之后才能继续使用,令人无语。Go语言缺少min、max这类函数,求数值绝对值的函数abs只接收/返回双精度小数类型,排序接口只能借助sort.Interface无奈的回避了被比较对象的类型,等等等等,都是没有泛型导致的结果。没有泛型,接口很难优雅起来。Go开发者没有明确拒绝泛型,只是说还没有找到很好的方法实现泛型(能不能学学已经开源的语言呀)。现实是,Go 1.0已经定型,泛型还没有,那些丑陋的接口为了保持向后兼容必须长期存在着。

Go有自己的哲学, 如果能有和目前哲学不冲突的泛型实现, 他们是不会反对的.

如果只是简单学学(或者叫抄袭)已经开源的语言的语法, 那是C++的设计风格(或者说C++从来都是这样设计的, 有什么特性就抄什么), 导致了各种脑裂的编程风格.

编译时泛型和运行时泛型可能是无法完全兼容的, 看这个例子:

type AdderT interface {

Add(a, b T) T

}


本文名称:go语言关闭gc,为什么用go语言
链接URL:http://cqcxhl.cn/article/hccgjh.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP