重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

mysql访问量怎么优化,mysql吞吐量优化

MySQL数据库性能优化之分区分表分库

分表是分散数据库压力的好方法。

创新互联是一家集网站建设,双滦企业网站建设,双滦品牌网站建设,网站定制,双滦网站建设报价,网络营销,网络优化,双滦网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

分表,最直白的意思,就是将一个表结构分为多个表,然后,可以再同一个库里,也可以放到不同的库。

当然,首先要知道什么情况下,才需要分表。个人觉得单表记录条数达到百万到千万级别时就要使用分表了。

分表的分类

**1、纵向分表**

将本来可以在同一个表的内容,人为划分为多个表。(所谓的本来,是指按照关系型数据库的第三范式要求,是应该在同一个表的。)

分表理由:根据数据的活跃度进行分离,(因为不同活跃的数据,处理方式是不同的)

案例:

对于一个博客系统,文章标题,作者,分类,创建时间等,是变化频率慢,查询次数多,而且最好有很好的实时性的数据,我们把它叫做冷数据。而博客的浏览量,回复数等,类似的统计信息,或者别的变化频率比较高的数据,我们把它叫做活跃数据。所以,在进行数据库结构设计的时候,就应该考虑分表,首先是纵向分表的处理。

这样纵向分表后:

首先存储引擎的使用不同,冷数据使用MyIsam 可以有更好的查询数据。活跃数据,可以使用Innodb ,可以有更好的更新速度。

其次,对冷数据进行更多的从库配置,因为更多的操作时查询,这样来加快查询速度。对热数据,可以相对有更多的主库的横向分表处理。

其实,对于一些特殊的活跃数据,也可以考虑使用memcache ,redis之类的缓存,等累计到一定量再去更新数据库。或者mongodb 一类的nosql 数据库,这里只是举例,就先不说这个。

**2、横向分表**

字面意思,就可以看出来,是把大的表结构,横向切割为同样结构的不同表,如,用户信息表,user_1,user_2等。表结构是完全一样,但是,根据某些特定的规则来划分的表,如根据用户ID来取模划分。

分表理由:根据数据量的规模来划分,保证单表的容量不会太大,从而来保证单表的查询等处理能力。

案例:同上面的例子,博客系统。当博客的量达到很大时候,就应该采取横向分割来降低每个单表的压力,来提升性能。例如博客的冷数据表,假如分为100个表,当同时有100万个用户在浏览时,如果是单表的话,会进行100万次请求,而现在分表后,就可能是每个表进行1万个数据的请求(因为,不可能绝对的平均,只是假设),这样压力就降低了很多很多。

延伸:为什么要分表和分区?

日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表。这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕。分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率。

什么是分表?

分表是将一个大表按照一定的规则分解成多张具有独立存储空间的实体表,我们可以称为子表,每个表都对应三个文件,MYD数据文件,.MYI索引文件,.frm表结构文件。这些子表可以分布在同一块磁盘上,也可以在不同的机器上。app读写的时候根据事先定义好的规则得到对应的子表名,然后去操作它。

什么是分区?

分区和分表相似,都是按照规则分解表。不同在于分表将大表分解为若干个独立的实体表,而分区是将数据分段划分在多个位置存放,可以是同一块磁盘也可以在不同的机器。分区后,表面上还是一张表,但数据散列到多个位置了。app读写的时候操作的还是大表名字,db自动去组织分区的数据。

**MySQL分表和分区有什么联系呢?**

1、都能提高mysql的性高,在高并发状态下都有一个良好的表现。

2、分表和分区不矛盾,可以相互配合的,对于那些大访问量,并且表数据比较多的表,我们可以采取分表和分区结合的方式(如果merge这种分表方式,不能和分区配合的话,可以用其他的分表试),访问量不大,但是表数据很多的表,我们可以采取分区的方式等。

3、分表技术是比较麻烦的,需要手动去创建子表,app服务端读写时候需要计算子表名。采用merge好一些,但也要创建子表和配置子表间的union关系。

4、表分区相对于分表,操作方便,不需要创建子表。

我们知道对于大型的互联网应用,数据库单表的数据量可能达到千万甚至上亿级别,同时面临这高并发的压力。Master-Slave结构只能对数据库的读能力进行扩展,写操作还是集中在Master中,Master并不能无限制的挂接Slave库,如果需要对数据库的吞吐能力进行进一步的扩展,可以考虑采用分库分表的策略。

**1、分表**

在分表之前,首先要选中合适的分表策略(以哪个字典为分表字段,需要将数据分为多少张表),使数据能够均衡的分布在多张表中,并且不影响正常的查询。在企业级应用中,往往使用org_id(组织主键)做为分表字段,在互联网应用中往往是userid。在确定分表策略后,当数据进行存储及查询时,需要确定到哪张表里去查找数据,

数据存放的数据表 = 分表字段的内容 % 分表数量

**2、分库**

分表能够解决单表数据量过大带来的查询效率下降的问题,但是不能给数据库的并发访问带来质的提升,面对高并发的写访问,当Master无法承担高并发的写入请求时,不管如何扩展Slave服务器,都没有意义了。我们通过对数据库进行拆分,来提高数据库的写入能力,即所谓的分库。分库采用对关键字取模的方式,对数据库进行路由。

数据存放的数据库=分库字段的内容%数据库的数量

**3、即分表又分库**

数据库分表可以解决单表海量数据的查询性能问题,分库可以解决单台数据库的并发访问压力问题。

当数据库同时面临海量数据存储和高并发访问的时候,需要同时采取分表和分库策略。一般分表分库策略如下:

中间变量 = 关键字%(数据库数量*单库数据表数量)

库 = 取整(中间变量/单库数据表数量)

表 = (中间变量%单库数据表数量)

实例:

1、分库分表

很明显,一个主表(也就是很重要的表,例如用户表)无限制的增长势必严重影响性能,分库与分表是一个很不错的解决途径,也就是性能优化途径,现在的案例是我们有一个1000多万条记录的用户表members,查询起来非常之慢,同事的做法是将其散列到100个表中,分别从members0到members99,然后根据mid分发记录到这些表中,牛逼的代码大概是这样子:

复制代码 代码如下:

?php

for($i=0;$i 100; $i++ ){

//echo "CREATE TABLE db2.members{$i} LIKE db1.members

";

echo "INSERT INTO members{$i} SELECT * FROM members WHERE mid%100={$i}

";

}

?

2、不停机修改mysql表结构

同样还是members表,前期设计的表结构不尽合理,随着数据库不断运行,其冗余数据也是增长巨大,同事使用了下面的方法来处理:

先创建一个临时表:

/*创建临时表*/

CREATE TABLE members_tmp LIKE members

然后修改members_tmp的表结构为新结构,接着使用上面那个for循环来导出数据,因为1000万的数据一次性导出是不对的,mid是主键,一个区间一个区间的导,基本是一次导出5万条吧,这里略去了

接着重命名将新表替换上去:

/*这是个颇为经典的语句哈*/

RENAME TABLE members TO members_bak,members_tmp TO members;

就是这样,基本可以做到无损失,无需停机更新表结构,但实际上RENAME期间表是被锁死的,所以选择在线少的时候操作是一个技巧。经过这个操作,使得原先8G多的表,一下子变成了2G多。

Mysql某个表有近千万数据,CRUD比较慢,如何优化?

数据千万级别之多,占用的存储空间也比较大,可想而知它不会存储在一块连续的物理空间上,而是链式存储在多个碎片的物理空间上。可能对于长字符串的比较,就用更多的时间查找与比较,这就导致用更多的时间。

可以做表拆分,减少单表字段数量,优化表结构。

在保证主键有效的情况下,检查主键索引的字段顺序,使得查询语句中条件的字段顺序和主键索引的字段顺序保持一致。

主要两种拆分 垂直拆分,水平拆分。

垂直分表

也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对 那种 几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。

垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Product一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。

数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。

水平分表

针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。不建议采用。

水平分库分表

将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。

水平分库分表切分规则

1. RANGE

从0到10000一个表,10001到20000一个表;

2. HASH取模

一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。

3. 地理区域

比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。

4. 时间

按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。

分库分表后面临的问题

事务支持

分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

跨库join

只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。

跨节点的count,order by,group by以及聚合函数问题

这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。

数据迁移,容量规划,扩容等问题

来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。

ID问题

一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由.

一些常见的主键生成策略

UUID

使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。

Twitter的分布式自增ID算法Snowflake

在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。

跨分片的排序分页

一般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。

网站访问量大 怎样优化mysql数据库

I 硬件配置优化

CPU选择:多核的CPU,主频高的CPU

内存:更大的内存

磁盘选择:更快的转速、RAID、阵列卡,

网络环境选择:尽量部署在局域网、SCI、光缆、千兆网、双网线提供冗余、0.0.0.0多端口绑定监听

II 操作系统级优化

使用64位的操作系统,更好的使用大内存。

设置noatime,nodiratime

[zhangxy@dowload_server1 ~]$ cat /etc/fstab

LABEL=/ / ext3 defaults,noatime,nodiratime 1 1

/dev/sda5 /data xfs defaults,noatime,nodiratime 1 2

优化内核参数

net.ipv4.tcp_keepalive_time=7200

net.ipv4.tcp_max_syn_backlog=1024

net.ipv4.tcp_syncookies=1

net.ipv4.tcp_tw_reuse = 1

net.ipv4.tcp_tw_recycle = 1

net.ipv4.neigh.default.gc_thresh3 = 2048

net.ipv4.neigh.default.gc_thresh2 = 1024

net.ipv4.neigh.default.gc_thresh1 = 256

net.ipv4.conf.default.rp_filter = 1

net.ipv4.conf.default.forwarding = 1

net.ipv4.conf.default.proxy_arp = 0

net.ipv4.tcp_syncookies = 1

net.core.netdev_max_backlog = 2048

net.core.dev_weight = 64

net.ipv4.tcp_rmem = 4096 87380 16777216

net.ipv4.tcp_wmem = 4096 65536 16777216

net.ipv4.tcp_rfc1337 = 1

net.ipv4.tcp_sack = 0

net.ipv4.tcp_fin_timeout = 20

net.ipv4.tcp_keepalive_probes = 5

net.ipv4.tcp_max_orphans = 32768

net.core.optmem_max = 20480

net.core.rmem_default = 16777216

net.core.rmem_max = 16777216

net.core.wmem_default = 16777216

net.core.wmem_max = 16777216

net.core.somaxconn = 500

net.ipv4.tcp_orphan_retries = 1

net.ipv4.tcp_max_tw_buckets = 18000

net.ipv4.ip_forward = 0

net.ipv4.conf.default.proxy_arp = 0

net.ipv4.conf.all.rp_filter = 1

kernel.sysrq = 1

net.ipv4.conf.default.send_redirects = 1

net.ipv4.conf.all.send_redirects = 0

net.ipv4.ip_local_port_range = 5000 65000

kernel.shmmax = 167108864

vm.swappiness=0

加大文件描述符限制

Vim /etc/security/limits.conf

加上

* soft nofile 65535

* hard nofile 65535

文件系统选择 xfs

/dev/sda5 /data xfs defaults,noatime,nodiratime 1 2

III Mysql设计优化

III.1存储引擎的选择

Myisam:数据库并发不大,读多写少,而且都能很好的用到索引,sql语句比较简单的应用,TB数据仓库

Innodb:并发访问大,写操作比较多,有外键、事务等需求的应用,系统内存较大。

III.2命名规则

多数开发语言命名规则:比如MyAdress

多数开源思想命名规则:my_address

避免随便命名

III.3字段类型选择

字段类型的选择的一般原则:

根据需求选择合适的字段类型,在满足需求的情况下字段类型尽可能小。

只分配满足需求的最小字符数,不要太慷慨。

原因:更小的字段类型更小的字符数占用更少的内存,占用更少的磁盘空间,占用更少的磁盘IO,以及占用更少的带宽。

III.3.1 整型:

见如下图:

类型

字节

最小值

最大值

(带符号的/无符号的)

(带符号的/无符号的)

TINYINT

1

-128

127

255

SMALLINT

2

-32768

32767

65535

MEDIUMINT

3

-8388608

8388607

16777215

INT

4

-2147483648

2147483647

4294967295

BIGINT

8

-9223372036854775808

9223372036854775807

18446744073709551615

根据满足需求的最小整数为选择原则,能用INT的就不要用BIGINT。

用无符号INT存储IP,而非CHAR(15)。

III.3.2 浮点型:

类型

字节

精度类型

使用场景

FLOAT(M,D)

4

单精度

精度要求不高,数值比较小

DOUBLE(M,D)(REAL)

8

双精度

精度要求不高,数值比较大

DECIMAL(M,D)(NUMERIC)

M+2

自定义精度

精度要求很高的场景

III.3.3 时间类型

类型

取值范围

存储空间

零值表示法

DATE

1000-01-01~9999-12-31

3字节

0000-00-00

TIME

-838:59:59~838:59:59

3字节

00:00:00

DATETIME

1000-01-01 00:00:00~9999-12-31 23:59:59

8字节

0000-00-00 00:00:00

TIMESTAMP

19700101000000~2037年的某个时刻

4字节

00000000000000

YEAR

YEAR(4):1901~2155 YEAR(2):1970~2069

1字节

0000

III.3.4 字符类型

类型

最大长度

占用存储空间

CHAR[(M)]

M字节

M字节

VARCHAR[(M)]

M字节

M+1字节

TINYBLOD,TINYTEXT

2^8-1字节

L+1字节

BLOB,TEXT

2^16-1字节

L+2

MEDIUMBLOB,MEDIUMTEXT

2^24-1字节

L+3

LONGBLOB,LONGTEXT

2^32-1字节

L+4

ENUM('value1','value2',...)

65535个成员

1或2字节

SET('value1','value2',...)

64个成员

1,2,3,4或8字节

注:L表示可变长度的意思

对于varchar和char的选择要根据引擎和具体情况的不同来选择,主要依据如下原则:

1. 如果列数据项的大小一致或者相差不大,则使用char。

2. 如果列数据项的大小差异相当大,则使用varchar。

3. 对于MyISAM表,尽量使用Char,对于那些经常需要修改而容易形成碎片的myisam和isam数据表就更是如此,它的缺点就是占用磁盘空间。

4. 对于InnoDB表,因为它的数据行内部存储格式对固定长度的数据行和可变长度的数据行不加区分(所有数据行共用一个表头部分,这个标头部分存放着指向各有关数据列的指针),所以使用char类型不见得会比使用varchar类型好。事实上,因为char类型通常要比varchar类型占用更多的空 间,所以从减少空间占用量和减少磁盘i/o的角度,使用varchar类型反而更有利。

5. 表中只要存在一个varchar类型的字段,那么所有的char字段都会自动变成varchar类型,因此建议定长和变长的数据分开。

III.4编码选择

单字节 latin1

多字节 utf8(汉字占3个字节,英文字母占用一个字节)

如果含有中文字符的话最好都统一采用utf8类型,避免乱码的情况发生。

III.5主键选择原则

注:这里说的主键设计主要是针对INNODB引擎

1. 能唯一的表示行。

2. 显式的定义一个数值类型自增字段的主键,这个字段可以仅用于做主键,不做其他用途。

3. MySQL主键应该是单列的,以便提高连接和筛选操作的效率。

4. 主键字段类型尽可能小,能用SMALLINT就不用INT,能用INT就不用BIGINT。

5. 尽量保证不对主键字段进行更新修改,防止主键字段发生变化,引发数据存储碎片,降低IO性能。

6. MySQL主键不应包含动态变化的数据,如时间戳、创建时间列、修改时间列等。

7. MySQL主键应当有计算机自动生成。

8. 主键字段放在数据表的第一顺序。

推荐采用数值类型做主键并采用auto_increment属性让其自动增长。

III.6其他需要注意的地方

NULL OR NOT NULL

尽可能设置每个字段为NOT NULL,除非有特殊的需求,原因如下:

1. 使用含有NULL列做索引的话会占用更多的磁盘空间,因为索引NULL列需要而外的空间来保存。

2. 进行比较的时候,程序会更复杂。

3. 含有NULL的列比较特殊,SQL难优化,如果是一个组合索引,那么这个NULL 类型的字段会极大影响整个索引的效率。

索引

索引的缺点:极大地加速了查询,减少扫描和锁定的数据行数。

索引的缺点:占用磁盘空间,减慢了数据更新速度,增加了磁盘IO。

添加索引有如下原则:

1. 选择唯一性索引。

2. 为经常需要排序、分组和联合操作的字段建立索引。

3. 为常作为查询条件的字段建立索引。

4. 限制索引的数据,索引不是越多越好。

5. 尽量使用数据量少的索引,对于大字段可以考虑前缀索引。

6. 删除不再使用或者很少使用的索引。

7. 结合核心SQL优先考虑覆盖索引。

8. 忌用字符串做主键。

反范式设计

适当的使用冗余的反范式设计,以空间换时间有的时候会很高效。

IV Mysql软件优化

开启mysql复制,实现读写分离、负载均衡,将读的负载分摊到多个从服务器上,提高服务器的处理能力。

使用推荐的GA版本,提升性能

利用分区新功能进行大数据的数据拆分

V Mysql配置优化

注意:全局参数一经设置,随服务器启动预占用资源。

key_buffer_size参数

mysql索引缓冲,如果是采用myisam的话要重点设置这个参数,根据(key_reads/key_read_requests)判断

innodb_buffer_pool_size参数

INNODB 数据、索引、日志缓冲最重要的引擎参数,根据(hit riatos和FILE I/O)判断

wait_time_out参数

线程连接的超时时间,尽量不要设置很大,推荐10s

max_connections参数

服务器允许的最大连接数,尽量不要设置太大,因为设置太大的话容易导致内存溢出,需要通过如下公式来确定:

SET @k_bytes = 1024;

SET @m_bytes = @k_bytes * 1024;

SET @g_bytes = @m_bytes * 1024;

SELECT

(

@@key_buffer_size + @@query_cache_size + @@tmp_table_size+

@@innodb_buffer_pool_size + @@innodb_additional_mem_pool_size+

@@innodb_log_buffer_size+

@@max_connections *

( @@read_buffer_size + @@read_rnd_buffer_size + @@sort_buffer_size+

@@join_buffer_size + @@binlog_cache_size + @@thread_stack

) )

/ @g_bytes AS MAX_MEMORY_USED_GB;

thread_concurrency参数

线程并发利用数量,(cpu+disk)*2,根据(os中显示的请求队列和tickets)判断

sort_buffer_size参数

获得更快的--ORDER BY,GROUP BY,SELECT DISTINCT,UNION DISTINCT

read_rnd_buffer_size参数

当根据键进行分类操作时获得更快的--ORDER BY

join_buffer_size参数

join连接使用全表扫描连接的缓冲大小,根据select_full_join判断

read_buffer_size参数

全表扫描时为查询预留的缓冲大小,根据select_scan判断

tmp_table_size参数

临时内存表的设置,如果超过设置就会转化成磁盘表,根据参数(created_tmp_disk_tables)判断

innodb_log_file_size参数(默认5M)

记录INNODB引擎的redo log文件,设置较大的值意味着较长的恢复时间。

Ø innodb_flush_method参数(默认fdatasync)

Linux系统可以使用O_DIRECT处理数据文件,避免OS级别的cache,O_DIRECT模式提高数据文件和日志文件的IO提交性能

innodb_flush_log_at_trx_commit(默认1)

表示每秒进行一次log写入cache,并flush log到磁盘。

表示在每次事务提交后执行log写入cache,并flush log到磁盘。

表示在每次事务提交后,执行log数据写入到cache,每秒执行一次flush log到磁盘。

VI Mysql语句级优化

1. 性能查的读语句,在innodb中统计行数,建议另外弄一张统计表,采用myisam,定期做统计.一般的对统计的数据不会要求太精准的情况下适用。

2. 尽量不要在数据库中做运算。

3. 避免负向查询和%前缀模糊查询。

4. 不在索引列做运算或者使用函数。

5. 不要在生产环境程序中使用select * from 的形式查询数据。只查询需要使用的列。

6. 查询尽可能使用limit减少返回的行数,减少数据传输时间和带宽浪费。

7. where子句尽可能对查询列使用函数,因为对查询列使用函数用不到索引。

8. 避免隐式类型转换,例如字符型一定要用’’,数字型一定不要使用’’。

9. 所有的SQL关键词用大写,养成良好的习惯,避免SQL语句重复编译造成系统资源的浪费。

10. 联表查询的时候,记得把小结果集放在前面,遵循小结果集驱动大结果集的原则。

11. 开启慢查询,定期用explain优化慢查询中的SQL语句。

MySQL常用优化方案

语句执行后,会显示三个字段: Query_ID(执行ID) | Duration(持续时间)| Query(查询语句) ;

拿到后Query_ID后,可执行 show profile for query Query_ID ,查看详细的准备时间,执行时间、执行结束( preparing、executing、end )等。

显示用户正在运行的线程,需要注意的是,除了 root 用户能看到所有正在运行的线程外,其他用户都只能看到自己正在运行的线程,看不到其它用户正在运行的线程。除非单独个这个用户赋予了PROCESS 权限。

显示字段包含: User| Host| db | Command | Time| State| Info 等。

解析语句,查询是否命中索引,及,命中何种索引,用以判断是否符合我们的预期。

返回字段包含: select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra 等。

select_type 常见类型:

(1) SIMPLE(简单SELECT,不使用UNION或子查询等)

(2) PRIMARY(子查询中最外层查询,查询中若包含任何复杂的子部分,最外层的select被标记为PRIMARY)

(3) UNION(UNION中的第二个或后面的SELECT语句)

(4) SUBQUERY(子查询中的第一个SELECT,结果不依赖于外部查询)

table 常见类型:

显示这一行的数据是关于哪张表的.

有时不是真实的表名字,看到的是derivedx(x是个数字,我的理解是第几步执行的结果)

type 常见类型:

对表访问方式,表示MySQL在表中找到所需行的方式,又称“访问类型”。

常用的类型有: ALL、index、range、 ref、eq_ref、const、system、NULL (从左到右,性能从差到好)

possible_keys

指出MySQL能使用哪个索引在表中找到记录,查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询使用(该查询可以利用的索引,如果没有任何索引显示 null)

该列完全独立于EXPLAIN输出所示的表的次序。这意味着在possible_keys中的某些键实际上不能按生成的表次序使用。

如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查WHERE子句看是否它引用某些列或适合索引的列来提高你的查询性能。如果是这样,创造一个适当的索引并且再次用EXPLAIN检查查询

key

key列显示MySQL实际决定使用的键(索引),必然包含在possible_keys中

如果没有选择索引,键是NULL。要想强制MySQL使用或忽视possible_keys列中的索引,在查询中使用FORCE INDEX、USE INDEX或者IGNORE INDEX。

key_len

表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度,非实际长度,为最大可能长度。

注:不损失精确性的情况下,长度越短越好。

ref

列与索引的比较,表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值。

rows

估算出结果集行数,表示MySQL根据表统计信息及索引选用情况,估算的找到所需的记录所需要读取的行数;

extra

该列包含MySQL解决查询的详细信息,有以下几种情况:

(1).Distinct

一旦MYSQL找到了与行相联合匹配的行,就不再搜索了

(2).Not exists

MYSQL优化了LEFT JOIN,一旦它找到了匹配LEFT JOIN标准的行,就不再搜索了

(3).Range checked for each

Record(index map:#)

没有找到理想的索引,因此对于从前面表中来的每一个行组合,MYSQL检查使用哪个索引,并用它来从表中返回行。这是使用索引的最慢的连接之一

(4).Using filesort

看到这个的时候,查询就需要优化了。MYSQL需要进行额外的步骤来发现如何对返回的行排序。它根据连接类型以及存储排序键值和匹配条件的全部行的行指针来排序全部行;

(5).Using temporary

看到这个的时候,查询需要优化了。这里,MYSQL需要创建一个临时表来存储结果,这通常发生在对不同的列集进行ORDER BY上,而不是GROUP BY上;

(6).Using index

列数据是从仅仅使用了索引中的信息而没有读取实际的行动的表返回的,这发生在对表的全部的请求列都是同一个索引的部分的时候。

(7).Using where

使用了WHERE从句来限制哪些行将与下一张表匹配或者是返回给用户。如果不想返回表中的全部行,并且连接类型ALL或index,这就会发生,或者是查询有问题。

mysql 有哪些常见的优化策略

在开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步操作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。

比如:表t1经过大量的频繁更新操作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select * from t1 where f1 = 20;

B:

select * from t1 where f1 = 30;

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql desc t1;+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)

表记录数:

mysql select count(*) from t1;+----------+| count(*) |+----------+|    32768 |+----------+1 row in set (0.01 sec)

这里我们两条经典的SQL:

SQL C:

select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

SQL D:

select * from t1 where rank1 =100  and rank2 =100  and rank3 =100;

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32034,cost为3243.65。

mysql explain  format=json select * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "3243.65"    },    "table": {      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "0.36",      "cost_info": {        "read_cost": "3232.07",        "eval_cost": "11.58",        "prefix_cost": "3243.65",        "data_read_per_join": "49K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍。

mysql explain  format=json select /*+ index_merge(t1) */ * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "441.09"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "100.00",      "cost_info": {        "read_cost": "330.79",        "eval_cost": "110.30",        "prefix_cost": "441.09",        "data_read_per_join": "473K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们再看下SQL D的计划:

不加HINT,

mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "534.34"    },    "table": {      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "0.07",      "cost_info": {        "read_cost": "478.84",        "eval_cost": "0.04",        "prefix_cost": "534.34",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

加了HINT,

mysql explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "5.23"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "100.00",      "cost_info": {        "read_cost": "5.13",        "eval_cost": "0.10",        "prefix_cost": "5.23",        "data_read_per_join": "440"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。

超详细MySQL数据库优化

数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷.

1. 优化一览图

2. 优化

笔者将优化分为了两大类,软优化和硬优化,软优化一般是操作数据库即可,而硬优化则是操作服务器硬件及参数设置.

2.1 软优化

2.1.1 查询语句优化

1.首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息.

2.例:

显示:

其中会显示索引和查询数据读取数据条数等信息.

2.1.2 优化子查询

在MySQL中,尽量使用JOIN来代替子查询.因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高.

2.1.3 使用索引

索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者MySQL数据库索引一文,介绍比较详细,此处记录使用索引的三大注意事项:

2.1.4 分解表

对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,

2.1.5 中间表

对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时.

2.1.6 增加冗余字段

类似于创建中间表,增加冗余也是为了减少连接查询.

2.1.7 分析表,,检查表,优化表

分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费.

1. 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;

2. 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]

option 只对MyISAM有效,共五个参数值:

3. 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;

LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志.,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁.

2.2 硬优化

2.2.1 硬件三件套

1.配置多核心和频率高的cpu,多核心可以执行多个线程.

2.配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度.

3.配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行操作的能力.

2.2.2 优化数据库参数

优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能.MySQL服务的配置参数都在my.cnf或my.ini,下面列出性能影响较大的几个参数.

2.2.3 分库分表

因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。

2.2.4 缓存集群

如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。

一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计.因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了.


网站名称:mysql访问量怎么优化,mysql吞吐量优化
网站URL:http://cqcxhl.cn/article/hcjoss.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP