重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

归并排序代码java 归并排序代码简洁

JAVA归并排序算法,有两行代码看不懂

以var a = [4,2,6,3,1,9,5,7,8,0];为例子。

创新互联是专业的丰镇网站建设公司,丰镇接单;提供成都网站设计、网站制作,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行丰镇网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

1.希尔排序。 希尔排序是在插入排序上面做的升级。是先跟距离较远的进行比较的一些方法。

function shellsort(arr){ var i,k,j,len=arr.length,gap = Math.ceil(len/2),temp; while(gap0){ for (var k = 0; k gap; k++) { var tagArr = []; tagArr.push(arr[k]) for (i = k+gap; i len; i=i+gap) { temp = arr[i]; tagArr.push(temp); for (j=i-gap; j -1; j=j-gap) { if(arr[j]temp){ arr[j+gap] = arr[j]; }else{ break; } } arr[j+gap] = temp; } console.log(tagArr,"gap:"+gap);//输出当前进行插入排序的数组。 console.log(arr);//输出此轮排序后的数组。 } gap = parseInt(gap/2); } return arr; }

过程输出:

[4, 9] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [2, 5] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [6, 7] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [3, 8] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [1, 0] "gap:5" [4, 2, 6, 3, 0, 9, 5, 7, 8, 1] [4, 6, 0, 5, 8] "gap:2" [0, 2, 4, 3, 5, 9, 6, 7, 8, 1] [2, 3, 9, 7, 1] "gap:2" [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] "gap:1" [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

由输出可以看到。第一轮间隔为5。依次对这些间隔的数组插入排序。

间隔为5:

[4, 9] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [2, 5] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [6, 7] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [3, 8] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [1, 0] "gap:5" [4, 2, 6, 3, 0, 9, 5, 7, 8, 1] [4, 6, 0, 5, 8] "gap:2" [0, 2, 4, 3, 5, 9, 6, 7, 8, 1] [2, 3, 9, 7, 1] "gap:2" [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] "gap:1" [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

间隔为2:

[4, 2, 6, 3, 0, 9, 5, 7, 8, 1] 4 6 0 5 8 2 3 9 7 1

排序后:

[0, 1, 4, 2, 5, 3, 6, 7, 8, 9]

间隔为1:

排序后:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]。

2.快速排序。把一个数组以数组中的某个值为标记。比这个值小的放到数组的左边,比这个值得大的放到数组的右边。然后再递归 对左边和右边的数组进行同样的操作。直到排序完成。通常以数组的第一个值为标记。

代码:

function quickSort(arr){ var len = arr.length,leftArr=[],rightArr=[],tag; if(len2){ return arr; } tag = arr[0]; for(i=1;ilen;i++){ if(arr[i]=tag){ leftArr.push(arr[i]) }else{ rightArr.push(arr[i]); } } return quickSort(leftArr).concat(tag,quickSort(rightArr)); }

3.归并排序。把一系列排好序的子序列合并成一个大的完整有序序列。从最小的单位开始合并。然后再逐步合并合并好的有序数组。最终实现归并排序。

合并两个有序数组的方法:

function subSort(arr1,arr2){ var len1 = arr1.length,len2 = arr2.length,i=0,j=0,arr3=[],bArr1 = arr1.slice(),bArr2 = arr2.slice(); while(bArr1.length!=0 || bArr2.length!=0){ if(bArr1.length == 0){ arr3 = arr3.concat(bArr2); bArr2.length = 0; }else if(bArr2.length == 0){ arr3 = arr3.concat(bArr1); bArr1.length = 0; }else{ if(bArr1[0]=bArr2[0]){ arr3.push(bArr1[0]); bArr1.shift(); }else{ arr3.push(bArr2[0]); bArr2.shift(); } } } return arr3; }

归并排序:

function mergeSort(arr){ var len= arr.length,arrleft=[],arrright =[],gap=1,maxgap=len-1,gapArr=[],glen,n; while(gapmaxgap){ gap = Math.pow(2,n); if(gap=maxgap){ gapArr.push(gap); } n++; } glen = gapArr.length; for (var i = 0; i glen; i++) { gap = gapArr[i]; for (var j = 0; j len; j=j+gap*2) { arrleft = arr.slice(j, j+gap); arrright = arr.slice(j+gap,j+gap*2); console.log("left:"+arrleft,"right:"+arrright); arr = arr.slice(0,j).concat(subSort(arrleft,arrright),arr.slice(j+gap*2)); } } return arr; }

排序[4,2,6,3,1,9,5,7,8,0]输出:

left:4 right:2 left:6 right:3 left:1 right:9 left:5 right:7 left:8 right:0 left:2,4 right:3,6 left:1,9 right:5,7 left:0,8 right: left:2,3,4,6 right:1,5,7,9 left:0,8 right: left:1,2,3,4,5,6,7,9 right:0,8

看出来从最小的单位入手。

第一轮先依次合并相邻元素:4,2; 6,3; 1,9; 5,7; 8,0

合并完成之后变成: [2,4,3,6,1,9,5,7,0,8]

第二轮以2个元素为一个单位进行合并:[2,4],[3,6]; [1,9],[5,7]; [0,8],[];

合并完成之后变成:[2,3,4,6,1,5,7,9,0,8]

第三轮以4个元素为一个单位进行合并:[2,3,4,6],[1,5,7,9]; [0,8],[]

合并完成之后变成: [1,2,3,4,5,6,7,9,0,8];

第四轮以8个元素为一个单位进行合并: [1,2,3,4,5,6,7,9],[0,8];

合并完成。 [0,1,2,3,4,5,6,7,8,9];

Java 合并排序 求程序

百度文库找了一个

四、合并排序 1、基本思想

合并排序的基本操作是:首先将待排序序列划分为两个长度相等的子序列;然后分别对两个子序列进行归并排序,得到两个有序的子序列;最后将两个有序的子序列合并成一个有序数列。

MergeSort(A[2*n]) {

divide A[2*n] into A[1,……,n],A[n-1,……,2*n];//划分 MergeSort(A[1,……,n]);//归并排序前半个子序列

MergeSort(A[[n-1,……,2*n]);//归并排序后半个子序列 Merge;//合并 }

2、算法复杂度分析

合并步的时间复杂度为O(n)。合并排序算法的时间复杂度为O(nlog2n)。

3、编程实现

public int[] MergeSort(int[] A, int[] tempA, int s, int t){

//如果序列中有一个以上的元素,即st则进行排序

if(s t){

int center = (s + t) / 2;

MergeSort(A, tempA, s, center)

;//归并排序前半个子序列

MergeSort(A, tempA, center + 1, t);

//归并排序后半个子序列

Merge(A,tempA, s, center, t);

//合并

}

return tempA;

}

public int[] Merge(int[] A, int[] tempA, int s, int m, int t){ int n = t- s + 1;

//n为数据总个数

int i=s;j=m+1;k=s

while(i = m j = t){

//取A[i]和A[j]中较小者放入tempA[k]

if(A[i]=A[j]){

tempA[k++] = A[i++]; }

else{

tempA[k++] = A[j++]; } }

if(i=m) while(i=m)

tempA[k++]=A[i++];//处理前一个子序列

else while(j=t)

tempA[k++]=A[j++];//处理后一个子序列

return tempA;

}

java归并排序

.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是归并排序算法:

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法); 自下而上的迭代;

在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:

However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.

然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。

说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。

2. 算法步骤

申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

设定两个指针,最初位置分别为两个已经排序序列的起始位置;

比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

重复步骤 3 直到某一指针达到序列尾;

将另一序列剩下的所有元素直接复制到合并序列尾。

3. 动图演示

代码实现 JavaScript 实例 function mergeSort ( arr ) {   // 采用自上而下的递归方法

var len = arr. length ;

if ( len

java实现归并排序问题

public void mySort(int low,int high){

int lo=low;

int hi=high;

if (lo=hi) {

return;

}else{

boolean flag=false;

while (lohi) {

if (arrs[lo]arrs[hi]) {

int temp=arrs[lo];

arrs[lo]=arrs[hi];

arrs[hi]=temp;

flag=!flag;

}else{

if (flag) {

lo++;

}else{

hi--;

}

}

}

lo--;

hi++;

mySort(low,lo);

mySort(hi,high);

}

}

这里是递归加二分法(排序的方法) 希望能帮到你!!望~~点赞


网站栏目:归并排序代码java 归并排序代码简洁
网站链接:http://cqcxhl.cn/article/hgiegp.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP