重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
matlab提供了现成的函数
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:空间域名、网页空间、营销软件、网站建设、昂昂溪网站维护、网站推广。
graycomatrix生成共生矩阵
graycoprops计算其特征值
具体用法:
glcm = graycomatrix(I)通过计算具有灰度级i和灰度级j的像素对在水平方向相邻出现的频繁程度。glcm中的每个元素说明了水平方向相邻像素对出现的次数。
matlab提供了现成的函数
graycomatrix生成共生矩阵
graycoprops计算其特征值
具体用法:
glcm = graycomatrix(I)
从图像I创建灰度共生矩阵glcm。通过计算具有灰度级i和灰度级j的像素对在水平方向相邻出现的频繁程度。glcm中的每个元素说明了水平方向相邻像素对出现的次数。如果灰度级为L则glcm的维数为L*L。
2.glcms = graycomatrix(I,param1,val1,param2,val2,...)
根据参数对的设定,返回一个或多个灰度共生矩阵。
参数说明:
'GrayLimits':灰度界限,为二元向量[low high]。灰度值小于等于low 时对应1,大于等于high时对应于灰度级。如果参数设为[],则共生矩阵使用图像的最小和最大灰度值作为界限,即[min(I(:)) max(I(:))]。
'NumLevels':整数,说明I中进行灰度缩放的灰度级数目。例如,如果NumLevel设为8,则共生矩阵缩放I中的灰度值使它们为1到8之间的整数。灰度级的数目决定了共生矩阵glcm的尺寸。缺省情况:数字图像:8;二进制图像:2。
'Offset':p行2列整型矩阵,说明感兴趣像素与其相邻像素之间的距离。每行是一个说明像素对之间偏移关系的二元向量[row_offset, col_offset]。行偏移row_offset是感兴趣像素和其相邻像素之间的间隔行数。列偏移同理。偏移常表达为一个角度,常用的角度如下:(其中D为像素距离)
角度 0 45 90 135
Offset [0,D] [-D D] [-D 0] [-D -D]
3.[glcms,SI] = graycomatrix(...)
返回缩放图像SI,SI是用来计算灰度共生矩阵的。SI中的元素值介于1和灰度级数目之间。
graycoprops:得到灰度共生矩阵得到各种属性
stats = graycoprops(glcm, properties):从灰度共生矩阵glcm计算静态属性。glcm是m*n*p的有效灰度共生矩阵。如果glcm是一个灰度共生矩阵的矩阵,则stats是包括每个灰度共生矩阵静态属性的矩阵。
graycoprops正规化了灰度共生矩阵,因此元素之和为1。正规化的GLCM中的元素(r,c)是具有灰度级r和c的定义的空间关系的像素对的联合概率。Graycoprops使用正规化的GLCM来计算属性。
属性参数如下:
1. 'Contrast' : 对比度。返回整幅图像中像素和它相邻像素之间的亮度反差。取值范围:[0,(GLCM行数-1)^2]。灰度一致的图像,对比度为0。
2. 'Correlation' : 相关。返回整幅图像中像素与其相邻像素是如何相关的度量值。取值范围:[-1,1]。灰度一致的图像,相关性为NaN。
3. 'Energy' : 能量。返回GLCM中元素的平方和。取值范围:[0 1]。灰度一致的图像能量为1。
4. 'Homogemeity' : 同质性。返回度量GLCM中元素的分布到对角线紧密程度。取值范围:[0 1]。对角矩阵的同质性为1。
灰度共生矩阵应用到segnet网络操作方法。
1、灰度共生矩阵是涉及像素距离和角度的矩阵函数,它通过计算图像中一定距离和一定方向的两点灰度之间的相关性,来反映图像在方向、间隔、变化幅度及快慢上的综合信息。
2、灰度直方图是对图像上单个像素具有某个灰度进行统计的结果,而灰度共生矩阵是对图像上保持某距离的两像素分别具有某灰度的状况进行统计得到的。
基于灰度共生矩阵的图像分割方法研究
时间:2009-12-16 11:13:13 来源:电子科技 作者:宁顺刚,白万民,喻 钧 西安工业大学计算机科学与工
程学院
所谓图像分割就是指把图像分成各具特性的区域,并提取出感兴趣目标的技术和过程。它是数字图像处理中的关键技术之一,是进一步进行图像识别、分析和理解的基础。目前图像分割方面现有的算法非常多,将它们进行分类的方法也提出了不少。一般分为3类:(1)阈值分割;(2)边缘检测;(3)区域提取。但还没有一种方法能普遍适用于各种图像。因此,对于图像分割的研究还在不断深人之中,也是目前图像处理中研究的热点之一。随着科技的发展进步,图像处理在军事中的运用也越来越广泛,这主要集中在迷彩设计这方面。而现在军事上的伪装迷彩是现代高技术战争中隐藏武器装备、保存自我的重要手段,也是消灭敌人的需要。因此对于迷彩的设计研究也一直都是各国的热门话题。文中主要以某山地航拍图为研究对像,对其进行背景分析然后再实现图像分割,为后期迷彩设计做准备。由于该山地背景纹理特征明显,故利用纹理分析对其进行背景分析,而灰度共生矩阵是纹理分析方法中最常用的一种方法。文中采用灰度共生矩阵方法对该图像进行分割研究。
1 灰度共生矩阵
灰度共生矩阵(Gray Level Co-occurrence Ma-trix,GLCM)是图像纹理分析方法中的一种,它反映不同像素相对位置的空间信息,在一定程度上反映了纹理图像中各灰度级在空间上的分布特性,是纹理分析领域中最经常采用的特征之一。灰度共生矩阵是图像灰度变化的二阶统计度量,也是描述纹理结构性质特征的基本函数,它统计了两个像素点位置的联合概率分布。设S为目标区域R中具有特定空间联系的像素对的集合,则共生矩阵P可定义为
式(1)等号右边的分子是具有某种空间关系、灰度值分别为i,j的像素对的个数,分母为像素对的总和个数(#代表数量),这样得到的P是归一化的。
对于一幅图像Gf(i,j),大小N×N,包含像素(动态范围为G)的灰度级为{0,1,…,G-1},它的灰度共生矩阵是一个二维矩阵C(i,J),每个矩阵元素表示在某一距离d和角度θ强度i和j联合出现的概率。因此,根据不同的d和θ值,这里可能存在多个共生矩阵。但在实际应用中,往往适当的选取d,而θ一般取O°,45°,90°,135,如图1所示。