重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python计算auc的方法-创新互联

创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!

创新互联建站主营昆都仑网站建设的网络公司,主营网站建设方案,手机APP定制开发,昆都仑h5微信平台小程序开发搭建,昆都仑网站营销推广欢迎昆都仑等地区企业咨询

小编给大家分享一下python计算auc的方法,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!

1、安装scikit-learn

1.1 Scikit-learn 依赖

·Python (>= 2.6 or >= 3.3),

·NumPy (>= 1.6.1),

·SciPy (>= 0.9).

分别查看上述三个依赖的版本:

python -V

  结果:

Python 2.7.3
python -c 'import scipy; print scipy.version.version'

scipy版本结果:

0.9.0
python -c "import numpy; print numpy.version.version"

numpy结果:

1.10.2

1.2 Scikit-learn安装

如果你已经安装了NumPy、SciPy和python并且均满足1.1中所需的条件,那么可以直接运行sudo

pip install - U scikit - learn

执行安装。

2、计算auc指标

import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
roc_auc_score(y_true, y_scores)

输出:

0.75

3、计算roc曲线

import numpy as np
from sklearn import metrics
y = np.array([1, 1, 2, 2])   #实际值
scores = np.array([0.1, 0.4, 0.35, 0.8])  #预测值
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)  #pos_label=2,表示值为2的实际值为正样本
print fpr
print tpr
print thresholds

输出:

array([ 0. ,  0.5,  0.5,  1. ])
array([ 0.5,  0.5,  1. ,  1. ])
array([ 0.8 , 0.4 , 0.35, 0.1 ])

看完了这篇文章,相信你对python计算auc的方法有了一定的了解,想了解更多相关知识,欢迎关注创新互联-成都网站建设公司行业资讯频道,感谢各位的阅读!


本文题目:python计算auc的方法-创新互联
标题链接:http://cqcxhl.cn/article/hohec.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP