重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
首先需要Linux相关知识,推荐Linux实战教程:
创新互联建站是一家专注于网站制作、成都网站建设与策划设计,长治网站建设哪家好?创新互联建站做网站,专注于网站建设10余年,网设计领域的专业建站公司;建站业务涵盖:长治等地区。长治做网站价格咨询:028-86922220
解压成功之后,便可以看到一个redis-6.2.5的文件夹,文件夹中有如下文件:
成功安装如下
redis默认安装的路径为 /usr/loacl/bin ,进入文件夹则发现redis文件:
首先必须在 /usr/local/bin 这个目录下,启动redis服务。启动服务的命令 redis-server northconfig/redis.conf
不是。
redis是一个key-value的nosql数据库(非关系型数据库)。支持存储的value类型包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。
这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。为了保证效率,数据都是缓存在内存中。
MySQL是关系型数据库,主要用于存放持久化数据,将数据存储在硬盘中,读取速度较慢。
Redis是NOSQL,即非关系型数据库,也是缓存数据库,即将数据存储在缓存中,缓存的读取速度快,能够大大的提高运行效率,但是保存时间有限。
Redis和MySQL的区别:
1、类型上
从类型上来说,MySQL是关系型数据库,Redis是缓存数据库。
2、作用上
MySQL用于持久化的存储数据到硬盘,功能强大,但是速度较慢。
Redis用于存储使用较为频繁的数据到缓存中,读取速度快。
3、需求上
MySQL和Redis因为需求的不同,一般都是配合使用。
4、场景选型上
Redis和MySQL要根据具体业务场景去选型。
5、存放位置
数据存放位置MySQL:数据放在磁盘。
Redis:数据放在内存。
6、适合存放数据类型
Redis适合放一些频繁使用,比较热的数据,因为是放在内存中,读写速度都非常快,一般会应用在下面一些场景:排行榜、计数器、消息队列推送、好友关注、粉丝。
1.在DB和Memcached之间如何保证数据的一致性。
2.Memcached数据命中率低或down机,应用直接访问DB,形成雪崩效应,数据库压力瞬间暴增,直接导致数据库响应慢,或者crash掉。
3.跨机房cache同步问题。
内存数据库,也叫缓存,可以存储访问频次很高的数据
redis是一个nosql(not only sql不仅仅只有sql)数据库,翻译成中文叫做非关系型型数据库
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。
常见的Nosql数据库有:
一、Redis数据库
Redis(RemoteDictionaryServer),即远程字典服务,是一个开源的使用ANSIC语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。
二、MongoDB数据库
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。
Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
扩展资料:
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
一、易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。无形之间,在架构的层面上带来了可扩展的能力。
二、大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache。NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说性能就要高很多。
三、灵活的数据模型
NoSQL无须事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是——个噩梦。这点在大数据量的Web2.0时代尤其明显。
四、高可用
NoSQL在不太影响性能的情况,就可以方便地实现高可用的架构。比如Cassandra、HBase模型,通过复制模型也能实现高可用。
参考资料来源:百度百科-NoSQL