重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
一、函数的定义
目前成都创新互联公司已为数千家的企业提供了网站建设、域名、网络空间、网站托管维护、企业网站设计、和田网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
函数是指将一组语句的集合通过一个名字(函数名)封装起来,想要执行这个函数,只需要调用函数名即可
特性:
减少重复代码
使程序变得可扩展
使程序变得易维护
二、函数的参数
2.1、形参和实参数
形参,调用时才会存在的值
实惨,实际存在的值
2.2、默认参数
定义:当不输入参数值会有一个默认的值,默认参数要放到最后
2.3、 关键参数
定义: 正常情况下,给函数传参数要安装顺序,不想按顺序可以用关键参数,只需要指定参数名即可,(指定了参数名的就叫关键参数),但是要求是关键参数必须放在位置参数(以位置顺序确定对应的参数)之后
2.4、非固定参数
定义: 如你的函数在传入参数时不确定需要传入多少个参数,就可以使用非固定参数
# 通过元组形式传递
# 通过列表形式传递
# 字典形式(通过k,value的方式传递)
# 通过变量的方式传递
三、函数的返回值
作用:
返回函数执行结果,如果没有设置,默认返回None
终止函数运行,函数遇到return终止函数
四、变量的作用域
全局变量和局部变量
在函数中定义的变量叫局部变量,在程序中一开始定义的变量叫全局变量
全局变量作用域整个程序,局部变量作用域是定义该变量的函数
当全局变量与局部变量同名是,在定义局部变量的函数内,局部变量起作用,其他地方全局变量起作用
同级的局部变量不能互相调用
想要函数里边的变量设置成全局变量,可用global进行设置
五、特殊函数
5.1、嵌套函数
定义: 嵌套函数顾名思义就是在函数里边再嵌套一层函数
提示 在嵌套函数里边调用变量是从里往外依次调用,意思就是如果需要调用的变量在当前层没有就会去外层去调用,依次内推
匿名函数
基于Lambda定义的函数格式为: lambda 参数:函数体
参数,支持任意参数。
匿名函数适用于简单的业务处理,可以快速并简单的创建函数。
# 与三元运算结合
5.3、高阶函数
定义:变量可以指向函数,函数的参数可以接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数称之为高阶函数 只需要满足一下任意一个条件,即是高阶函数
接收一个或多个函数作为输入
return返回另一个函数
5.4、递归函数
定义:一个函数可以调用其他函数,如果一个函数调用自己本身,这个函数就称为递归函数
在默认情况下Python最多能递归1000次,(这样设计师是为了防止被内存被撑死)可以通过sys.setrecursionlimit(1500)进行修改
递归实现过程是先一层一层的进,然后在一层一层的出来
必须有一个明确的条件结束,要不然就是一个死循环了
每次进入更深层次,问题规模都应该有所减少
递归执行效率不高,递归层次过多会导致站溢出
# 计算4的阶乘 4x3x2x1
# 打印数字从1-100
5.5、闭包现象
定义:内层函数调用外层函数的变量,并且内存函数被返回到外边去了
闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论在何处调用,优先使用自己外层包裹的作用域
def Sum(m): #函数返回两个值:递归次数,所求的值 if m==1:return 1,m return 1+Sum(m-1)[0],m+Sum(m-1)[1]cishu=Sum(10)[0] print cishu def Sum(m,n=1): ... if m==1:return n,m ... return n,m+Sum(m-1,n+1)[1] print Sum(10)[0] 10 print Sum(5)[0] 5
一、使用递归的背景
先来看一个☝️接口结构:
这个孩子,他是一个列表,下面有6个元素
展开children下第一个元素[0]看看:
发现[0]除了包含一些字段信息,还包含了 children 这个字段(喜当爹),同时这个children下包含了2个元素:
展开他的第一个元素,不出所料,也含有children字段(人均有娃)
可以理解为children是个对象,他包含了一些属性,特别的是其中有一个属性与父级children是一模一样的,他包含父级children所有的属性。
比如每个children都包含了一个name字段,我们要拿到所有children里name字段的值,这时候就要用到递归啦~
二、find_children.py
拆分理解:
1.首先import requests库,用它请求并获取接口返回的数据
2.若children以上还有很多层级,可以缩小数据范围,定位到children的上一层级
3.来看看定义的函数
我们的函数调用:find_children(node_f, 'children')
其中,node_f:json字段
children:递归对象
以下这段是实现递归的核心:
if items['children']:
items['children']不为None,表示该元素下的children字段还有子类数据值,此时满足if条件,可理解为 if 1。
items['children']为None,表示该元素下children值为None,没有后续可递归值,此时不满足if条件,可理解为 if 0,不会再执行if下的语句(不会再递归)。
至此,每一层级中children的name以及下一层级children的name就都取出来了
希望到这里能帮助大家理解递归的思路,以后根据这个模板直接套用就行
(晚安啦~)
源码参考:
函数的递归调用
递归问题是一个说简单也简单,说难也有点难理解的问题.我想非常有必要对其做一个总结.
首先理解一下递归的定义,递归就是直接或间接的调用自身.而至于什么时候要用到递归,递归和非递归又有那些区别?又是一个不太容易掌握的问题,更难的是对于递归调用的理解.下面我们就从程序+图形的角度对递归做一个全面的阐述.
我们从常见到的递归问题开始:
1 阶层函数
#include iostream
using namespace std;
int factorial(int n)
{
if (n == 0)
{
return 1;
}
else
{
int result = factorial(n-1);
return n * result;
}
}
int main()
{
int x = factorial(3);
cout x endl;
return 0;
}
这是一个递归求阶层函数的实现。很多朋友只是知道该这么实现的,也清楚它是通过不断的递归调用求出的结果.但他们有些不清楚中间发生了些什么.下面我们用图对此做一个清楚的流程:
根据上面这个图,大家可以很清楚的看出来这个函数的执行流程。我们的阶层函数factorial被调用了4次.并且我们可以看出在调用后面的调用中,前面的调用并不退出。他们同时存在内存中。可见这是一件很浪费资源的事情。我们该次的参数是3.如果我们传递10000呢。那结果就可想而知了.肯定是溢出了.就用int型来接收结果别说10000,100就会产生溢出.即使不溢出我想那肯定也是见很浪费资源的事情.我们可以做一个粗略的估计:每次函数调用就单变量所需的内存为:两个int型变量.n和result.在32位机器上占8B.那么10000就需要10001次函数调用.共需10001*8/1024 = 78KB.这只是变量所需的内存空间.其它的函数调用时函数入口地址等仍也需要占用内存空间。可见递归调用产生了一个不小的开销.
2 斐波那契数列
int Fib(int n)
{
if (n = 1)
{
return n;
}
else
{
return Fib(n-1) + Fib(n-2);
}
}
这个函数递归与上面的那个有些不同.每次调用函数都会引起另外两次的调用.最后将结果逐级返回.
我们可以看出这个递归函数同样在调用后买的函数时,前面的不退出而是在等待后面的结果,最后求出总结果。这就是递归.
3
#include iostream
using namespace std;
void recursiveFunction1(int num)
{
if (num 5)
{
cout num endl;
recursiveFunction1(num+1);
}
}
void recursiveFunction2(int num)
{
if (num 5)
{
recursiveFunction2(num+1);
cout num endl;
}
}
int main()
{
recursiveFunction1(0);
recursiveFunction2(0);
return 0;
}
运行结果:
1
2
3
4
4
3
2
1
该程序中有两个递归函数。传递同样的参数,但他们的输出结果刚好相反。理解这两个函数的调用过程可以很好的帮助我们理解递归:
我想能够把上面三个函数的递归调用过程理解了,你已经把递归调用理解的差不多了.并且从上面的递归调用中我们可以总结出递归的一个规律:他是逐级的调用,而在函数结束的时候是从最后面往前反序的结束.这种方式是很占用资源,也很费时的。但是有的时候使用递归写出来的程序很容易理解,很易读.
为什么使用递归:
1 有时候使用递归写出来的程序很容易理解,很易读.
2 有些问题只有递归能够解决.非递归的方法无法实现.如:汉诺塔.
递归的条件:
并不是说所有的问题都可以使用递归解决,他必须的满足一定的条件。即有一个出口点.也就是说当满足一定条件时,程序可以结束,从而完成递归调用,否则就陷入了无限的递归调用之中了.并且这个条件还要是可达到的.
递归有哪些优点:
易读,容易理解,代码一般比较短.
递归有哪些缺点:
占用内存资源多,费时,效率低下.
因此在我们写程序的时候不要轻易的使用递归,虽然他有他的优点,但是我们要在易读性和空间,效率上多做权衡.一般情况下我们还是使用非递归的方法解决问题.若一个算法非递归解法非常难于理解。我们使用递归也未尝不可.如:二叉树的遍历算法.非递归的算法很难与理解.而相比递归算法就容易理解很多.
对于递归调用的问题,我们在前一段时间写图形学程序时,其中有一个四连同填充算法就是使用递归的方法。结果当要填充的图形稍微大一些时,程序就自动关闭了.这不是一个人的问题,所有人写出来的都是这个问题.当时我们给与的解释就是堆栈溢出。就多次递归调用占用太多的内存资源致使堆栈溢出,程序没有内存资源执行下去,从而被操作系统强制关闭了.这是一个真真切切的例子。所以我们在使用递归的时候需要权衡再三.
递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念。
绝大多数编程语言支持函数的自调用,在这些语言中函数可以通过调用自身来进行递归。计算理论可以证明递归的作用可以完全取代循环,因此在很多函数编程语言(如Scheme)中习惯用递归来实现循环。
计算机科学家尼克劳斯·维尔特如此描述递归:
递归的强大之处在于它允许用户用有限的语句描述无限的对象。因此,在计算机科学中,递归可以被用来描述无限步的运算,尽管描述运算的程序是有限的。
python 2 递归函数和其它语言,基本没有差别,只是不支持尾递归。无限递归最大值为固定的,但可以修改。
作者:黄哥
递归的思想主要是能够重复某些动作,比如简单的阶乘,次方,回溯中的八皇后,数独,还有汉诺塔,分形。
由于堆栈的机制,一般的递归可以保留某些变量在历史状态中,比如你提到的return x * power..., 但是某些或许庞大的问题或者是深度过大的问题就需要尽量避免递归,因为可能会栈溢出。还有一个问题是~python不支持尾递归优化!!!!所以~还是尽量避免递归的出现。
def power(x, n)
if n 0:
return 1
return x * power(x, n - 1)
power(3, 3)
3 * power(3, 2)
3 * (3 * power(3, 1))
3 * (3 * (3 * power(3, 0)))
3 * (3 * (3 * 1)) 这里n = 0, return 1
3 * (3 * 3)
3 * 9
27
当函数形参n=0的时候,开始回退~直到第一次调用power结束。