重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Spark中两个类似的api是什么

这篇“Spark中两个类似的api是什么”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Spark中两个类似的api是什么”文章吧。

创新互联建站-成都网站建设公司,专注网站制作、成都网站设计、网站营销推广,域名与空间,网页空间,绵阳服务器托管有关企业网站制作方案、改版、费用等问题,请联系创新互联建站

Spark 中有两个类似的api,分别是 reduceByKey  和 groupByKey  。这两个的功能类似,但底层实现却有些不同,那么为什么要这样设计呢?我们来从源码的角度分析一下。

先看两者的调用顺序(都是使用默认的Partitioner,即defaultPartitioner)

所用 spark 版本:spark 2.1.0

#### 先看reduceByKey
Step1
```
  def reduceByKey(func: (V, V) => V): RDD[(K, V)] = self.withScope {
    reduceByKey(defaultPartitioner(self), func)
  }
```
Setp2
```
  def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {
    combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
  }
```
Setp3
```
def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
    require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0
    if (keyClass.isArray) {
      if (mapSideCombine) {
        throw new SparkException("Cannot use map-side combining with array keys.")
      }
      if (partitioner.isInstanceOf[HashPartitioner]) {
        throw new SparkException("HashPartitioner cannot partition array keys.")
      }
    }
    val aggregator = new Aggregator[K, V, C](
      self.context.clean(createCombiner),
      self.context.clean(mergeValue),
      self.context.clean(mergeCombiners))
    if (self.partitioner == Some(partitioner)) {
      self.mapPartitions(iter => {
        val context = TaskContext.get()
        new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))
      }, preservesPartitioning = true)
    } else {
      new ShuffledRDD[K, V, C](self, partitioner)
        .setSerializer(serializer)
        .setAggregator(aggregator)
        .setMapSideCombine(mapSideCombine)
    }
  }
```

姑且不去看方法里面的细节,我们会只要知道最后调用的是 combineByKeyWithClassTag 这个方法。这个方法有两个参数我们来重点看一下,
```
def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null)
```
首先是 **partitioner** 参数 ,这个即是 RDD 的分区设置。除了默认的 defaultPartitioner,Spark 还提供了 RangePartitioner 和 HashPartitioner 外,此外用户也可以自定义 partitioner 。通过源码可以发现如果是 HashPartitioner 的话,那么是会抛出一个错误的。

然后是 **mapSideCombine** 参数 ,这个参数正是 reduceByKey 和 groupByKey 最大不同的地方,它决定是是否会先在节点上进行一次 Combine 操作,下面会有更具体的例子来介绍。

#### 然后是groupByKey
Step1
```
  def groupByKey(): RDD[(K, Iterable[V])] = self.withScope {
    groupByKey(defaultPartitioner(self))
  }
```
Step2
```
  def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = self.withScope {
    // groupByKey shouldn't use map side combine because map side combine does not
    // reduce the amount of data shuffled and requires all map side data be inserted
    // into a hash table, leading to more objects in the old gen.
    val createCombiner = (v: V) => CompactBuffer(v)
    val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
    val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
    val bufs = combineByKeyWithClassTag[CompactBuffer[V]](
      createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)
    bufs.asInstanceOf[RDD[(K, Iterable[V])]]
  }
```
Setp3
```
def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
    require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0
    if (keyClass.isArray) {
      if (mapSideCombine) {
        throw new SparkException("Cannot use map-side combining with array keys.")
      }
      if (partitioner.isInstanceOf[HashPartitioner]) {
        throw new SparkException("HashPartitioner cannot partition array keys.")
      }
    }
    val aggregator = new Aggregator[K, V, C](
      self.context.clean(createCombiner),
      self.context.clean(mergeValue),
      self.context.clean(mergeCombiners))
    if (self.partitioner == Some(partitioner)) {
      self.mapPartitions(iter => {
        val context = TaskContext.get()
        new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))
      }, preservesPartitioning = true)
    } else {
      new ShuffledRDD[K, V, C](self, partitioner)
        .setSerializer(serializer)
        .setAggregator(aggregator)
        .setMapSideCombine(mapSideCombine)
    }
  }
```

结合上面 reduceByKey 的调用链,可以发现最终其实都是调用 combineByKeyWithClassTag 这个方法的,但调用的参数不同。
reduceByKey的调用
```
combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
```
groupByKey的调用
```
combineByKeyWithClassTag[CompactBuffer[V]](
      createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)
```
正是两者不同的调用方式导致了两个方法的差别,我们分别来看
- reduceByKey的泛型参数直接是[V],而groupByKey的泛型参数是[CompactBuffer[V]]。这直接导致了 reduceByKey 和 groupByKey 的返回值不同,前者是RDD[(K, V)],而后者是RDD[(K, Iterable[V])]

- 然后就是mapSideCombine = false 了,这个mapSideCombine 参数的默认是true的。这个值有什么用呢,上面也说了,这个参数的作用是控制要不要在map端进行初步合并(Combine)。可以看看下面具体的例子。


从功能上来说,可以发现 ReduceByKey 其实就是会在每个节点先进行一次**合并**的操作,而 groupByKey 没有。

这么来看 ReduceByKey 的性能会比 groupByKey 好很多,因为有些工作在节点已经处理了。

以上就是关于“Spark中两个类似的api是什么”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注创新互联行业资讯频道。


网站名称:Spark中两个类似的api是什么
当前地址:http://cqcxhl.cn/article/iieipd.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP