重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本篇内容主要讲解“怎么在数组中找到和为特定值的三个数”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么在数组中找到和为特定值的三个数”吧!
在运城等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站设计制作、网站设计 网站设计制作按需设计,公司网站建设,企业网站建设,高端网站设计,成都全网营销,外贸网站制作,运城网站建设费用合理。
题目的具体要求是什么呢?给定下面这样一个整型数组:
我们随意选择一个特定值,比如13,要求找出三数之和等于13的全部组合。
由于5+6+2=13, 5+1+7=13,3+9+1=13,所以最终的输出结果如下:
【5, 6,2】
【5, 1,7】
【3, 9,1】
小灰的思路,是把原本的“三数之和问题”,转化成求n次“两数之和问题”。
我们以上面这个数组为例,选择特定值13,演示一下小灰的具体思路:
第1轮,访问数组的第1个元素5,把问题转化成从后面元素中找出和为8(13-5)的两个数:
如何找出和为8的两个数呢?按照上一次所讲的,我们可以使用哈希表高效求解:
第2轮,访问数组的第2个元素12,把问题转化成从后面元素中找出和为1(13-12)的两个数:
第3轮,访问数组的第3个元素6,把问题转化成从后面元素中找出和为7(13-6)的两个数:
以此类推,一直遍历完整个数组,相当于求解了n次两数之和问题。
public static List> threeSum(int[] nums, int target) { List
> resultList = new ArrayList<>(); for (int i = 0; i < nums.length; i++) { Map
map = new HashMap<>(); int d1 = target - nums[i]; //寻找两数之和等于d1的组合 for (int j = i+1; j < nums.length; j++) { int d2 = d1 - nums[j]; if (map.containsKey(d2)) { resultList.add(Arrays.asList(nums[i], d2, nums[j])); } map.put(nums[j], j); } } return resultList; }
在上面的代码中,每一轮解决“两数之和问题”的时间复杂度是O(n),一共迭代n轮,所以该解法总的时间复杂度是O(n²)。
至于空间复杂度,同一个哈希表被反复构建,哈希表中最多有n-1个键值对,所以该解法的空间复杂度是O(n)。
我们仍然以之前的数组为例,对数组进行升序排列:
这样说起来有些抽象,我们来具体演示一下:
第1轮,访问数组的第1个元素1,把问题转化成从后面元素中找出和为12(13-1)的两个数。
如何找出和为12的两个数呢?我们设置两个指针,指针j指向剩余元素中最左侧的元素2,指针k指向最右侧的元素12:
计算两指针对应元素之和,2+12 = 14 > 12,结果偏大了。
由于数组是按照升序排列,k左侧的元素一定小于k,因此我们把指针k左移一位:
计算两指针对应元素之和,2+9 = 11< 12,这次结果又偏小了。
j右侧的元素一定大于j,因此我们把指针j右移一位:
计算两指针对应元素之和,3+9 = 12,正好符合要求!
因此我们成功找到了一组匹配的组合:1,3,9
但这并不是结束,我们要继续寻找其他组合,让指针k继续左移:
计算两指针对应元素之和,3+7 = 10< 12,结果偏小了。
于是我们让指针j右移:
计算两指针对应元素之和,5+7 = 12,又找到符合要求的一组:
1,5,7
我们继续寻找,让指针k左移:
计算两指针对应元素之和,5+6 = 11< 12,结果偏小了。
于是我们让指针j右移:
此时双指针重合在了一起,如果再继续移动,就有可能和之前找到的组合重复,因此我们直接结束本轮循环。
第2轮,访问数组的第2个元素2,把问题转化成从后面元素中找出和为11(13-2)的两个数。
我们仍然设置两个指针,指针j指向剩余元素中最左侧的元素3,指针k指向最右侧的元素12:
计算两指针对应元素之和,3+12 = 15 > 11,结果偏大了。
我们让指针k左移:
计算两指针对应元素之和,3+9 = 12 > 11,结果仍然偏大。
我们让指针k继续左移:
计算两指针对应元素之和,3+7 = 10 < 11,结果偏小了。
我们让指针j右移:
计算两指针对应元素之和,5+7 = 12 > 11,结果又偏大了。
我们让指针k左移:
计算两指针对应元素之和,5+6 = 11,于是我们又找到符合要求的一组:
2,5,6
我们继续寻找,让指针k左移:
此时双指针又一次重合在一起,我们结束本轮循环。
按照这个思路,我们一直遍历完整个数组。
像这样利用两个指针指向数组两端,不断向中间靠拢调整来寻找匹配组合的方法,就是双指针法,也被称为“夹逼法”。
public static List> threeSumv2(int[] nums, int target) { Arrays.sort(nums); List
> resultList = new ArrayList
>(); //大循环 for (int i = 0; i < nums.length; i++) { int d = target - nums[i]; // j和k双指针循环定位,j在左端,k在右端 for (int j=i+1,k=nums.length-1; j
d) { k--; } //双指针重合,跳出本次循环 if (j == k) { break; } if (nums[j] + nums[k] == d) { List list = Arrays.asList(nums[i], nums[j], nums[k]); resultList.add(list); } } } return resultList; }
上面这段代码表面上有三层循环,但每一轮指针j和k的移动次数加起来最多n-1次,因此该解法的整体时间复杂度是O(n²)。
最关键的是,该解法并没有使用额外的集合(排序是直接在输入数组上进行的),所以空间复杂度只有O(1)!
到此,相信大家对“怎么在数组中找到和为特定值的三个数”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!