重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍“Python爬虫怎么实现全国失信被执行人名单查询功能”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python爬虫怎么实现全国失信被执行人名单查询功能”文章能帮助大家解决问题。
创新互联建站是一家以网络技术公司,为中小企业提供网站维护、网站制作、网站设计、网站备案、服务器租用、域名与空间、软件开发、微信小程序定制开发等企业互联网相关业务,是一家有着丰富的互联网运营推广经验的科技公司,有着多年的网站建站经验,致力于帮助中小企业在互联网让打出自已的品牌和口碑,让企业在互联网上打开一个面向全国乃至全球的业务窗口:建站欢迎来电:028-86922220
一、需求说明
利用百度的接口,实现一个全国失信被执行人名单查询功能。输入姓名,查询是否在全国失信被执行人名单中。
二、python实现
版本1:
# -*- coding:utf-8*- import sys reload(sys) sys.setdefaultencoding('utf-8') import time import requests time1=time.time() import pandas as pd import json iname=[] icard=[] def person_executed(name): for i in range(0,30): try: url="https://sp0.baidu.com/8aQDcjqpAAV3otqbppnN2DJv/api.php?resource_id=6899" \ "&query=%E5%A4%B1%E4%BF%A1%E8%A2%AB%E6%89%A7%E8%A1%8C%E4%BA%BA%E5%90%8D%E5%8D%95" \ "&cardNum=&" \ "iname="+str(name)+ \ "&areaName=" \ "&pn="+str(i*10)+ \ "&rn=10" \ "&ie=utf-8&oe=utf-8&format=json" html=requests.get(url).content html_json=json.loads(html) html_data=html_json['data'] for each in html_data: k=each['result'] for each in k: print each['iname'],each['cardNum'] iname.append(each['iname']) icard.append(each['cardNum']) except: pass if __name__ == '__main__': name="郭**" person_executed(name) print len(iname) #####################将数据组织成数据框########################### data=pd.DataFrame({"name":iname,"IDCard":icard}) #################数据框去重#################################### data1=data.drop_duplicates() print data1 print len(data1) #########################写出数据到excel######################################### pd.DataFrame.to_excel(data1,"F:\\iname_icard_query.xlsx",header=True,encoding='gbk',index=False) time2=time.time() print u'ok,爬虫结束!' print u'总共耗时:'+str(time2-time1)+'s'
三、效果展示
"D:\Program Files\Python27\python.exe" D:/PycharmProjects/learn2017/全国失信被执行人查询.py
郭** 34122319790****5119
郭** 32032119881****2419
郭** 32032119881****2419
3
IDCard name
0 34122319790****5119 郭**
1 32032119881****2419 郭**
2
ok,爬虫结束!
总共耗时:7.72000002861s
Process finished with exit code 0
版本2:
# -*- coding:utf-8*- import sys reload(sys) sys.setdefaultencoding('utf-8') import time import requests time1=time.time() import pandas as pd import json iname=[] icard=[] courtName=[] areaName=[] caseCode=[] duty=[] performance=[] disruptTypeName=[] publishDate=[] def person_executed(name): for i in range(0,30): try: url="https://sp0.baidu.com/8aQDcjqpAAV3otqbppnN2DJv/api.php?resource_id=6899" \ "&query=%E5%A4%B1%E4%BF%A1%E8%A2%AB%E6%89%A7%E8%A1%8C%E4%BA%BA%E5%90%8D%E5%8D%95" \ "&cardNum=&" \ "iname="+str(name)+ \ "&areaName=" \ "&pn="+str(i*10)+ \ "&rn=10" \ "&ie=utf-8&oe=utf-8&format=json" html=requests.get(url).content html_json=json.loads(html) html_data=html_json['data'] for each in html_data: k=each['result'] for each in k: print each['iname'],each['cardNum'],each['courtName'],each['areaName'],each['caseCode'],each['duty'],each['performance'],each['disruptTypeName'],each['publishDate'] iname.append(each['iname']) icard.append(each['cardNum']) courtName.append(each['courtName']) areaName.append(each['areaName']) caseCode.append(each['caseCode']) duty.append(each['duty']) performance.append(each['performance']) disruptTypeName.append(each['disruptTypeName']) publishDate.append(each['publishDate']) except: pass if __name__ == '__main__': name="郭**" person_executed(name) print len(iname) #####################将数据组织成数据框########################### # data=pd.DataFrame({"name":iname,"IDCard":icard}) detail_data=pd.DataFrame({"name":iname,"IDCard":icard,"courtName":courtName,"areaName":areaName,"caseCode":caseCode,"duty":duty,"performance":performance,\ "disruptTypeName":disruptTypeName,"publishDate":publishDate}) #################数据框去重#################################### # data1=data.drop_duplicates() # print data1 # print len(data1) detail_data1=detail_data.drop_duplicates() # print detail_data1 # print len(detail_data1) #########################写出数据到excel######################################### pd.DataFrame.to_excel(detail_data1,"F:\\iname_icard_query.xlsx",header=True,encoding='gbk',index=False) time2=time.time() print u'ok,爬虫结束!' print u'总共耗时:'+str(time2-time1)+'s'
关于“Python爬虫怎么实现全国失信被执行人名单查询功能”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注创新互联行业资讯频道,小编每天都会为大家更新不同的知识点。