重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
1、二叉树上的操作
江门网站制作公司哪家好,找成都创新互联!从网页设计、网站建设、微信开发、APP开发、响应式网站设计等网站项目制作,到程序开发,运营维护。成都创新互联于2013年创立到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选成都创新互联。
均是C++实现先根序创建二叉树及其其它方法
我认为在二叉树的创建方法和遍历以外,以下方法值得我们关注:
public: int size()const; //求结点个数 int height()const; //求树的高度 BinTreeNode* root_1()const; //求根节点 BinTreeNode * leftChild(BinTreeNode * cur)const; //求当前结点的左孩子 BinTreeNode * rightChild(BinTreeNode * cur)const; //求当前结点的右孩子 BinTreeNode * find(const Type &key)const; //查找当前结点 BinTreeNode * parent(BinTreeNode * cur)const; //查找当前结点的父结点 void makeEmpty(); //将二叉树置空 bool equal(const BinTree &t)const; //两个二叉树是否相同的比较 BinTreeNode * copy(BinTreeNode *t)const; //拷贝构造函数的方法,复制一个二叉树
2、方法一一实现:
(1)、求结点个数
templateint BinTree ::size(BinTreeNode *t)const{ if(t == NULL){ return 0; } return size(t->leftChild) + size(t->rightChild) + 1; }
(2)、求树的高度
templateint BinTree ::height(BinTreeNode *t)const{ if(t == NULL){ return 0; } int leftHeight = height(t->leftChild); int rightHeight = height(t->rightChild); return (leftHeight > rightHeight ? leftHeight : rightHeight) + 1; }
(3)、查找当前结点
templateBinTreeNode * BinTree ::find(const Type &key, BinTreeNode *t)const{ if(t == NULL){ return NULL; } if(t->data == key){ return t; } BinTreeNode *p = find(key, t->leftChild); if(p != NULL){ return p; } return find(key, t->rightChild); }
(4)、查找当前结点的父结点
templateBinTreeNode * BinTree ::parent(BinTreeNode * cur, BinTreeNode *t)const{ if(t == NULL || cur == NULL || cur == t){ return NULL; } if(t->leftChild == cur || t->rightChild == cur){ return t; } //思路:利用父的孩子节点和当前节点比较 BinTreeNode *p = parent(cur, t->leftChild); if(p != NULL){ return p; } return parent(cur, t->rightChild); }
(5)、将二叉树置空
templatevoid BinTree ::makeEmpty(BinTreeNode *t){ if(t != NULL){ makeEmpty(t->leftChild); makeEmpty(t->rightChild); delete t; } }
(6)、两个二叉树是否相同的比较
templatebool BinTree ::equal(BinTreeNode *t, BinTreeNode *t1)const{ if(t == NULL && t1 == NULL){ //取反判断与这个是一个道理 return true; } if(t != NULL && t1!= NULL && t->data == t1->data && equal(t->leftChild, t1->leftChild) && equal(t->rightChild, t1->rightChild)){ return true; }else{ return false; } }
(7)、拷贝一个二叉树
templateBinTreeNode * BinTree ::copy(BinTreeNode *t)const{ BinTreeNode * tmp; if(t == NULL){ return NULL; }else{ tmp = new BinTreeNode (t->data); tmp->leftChild = copy(t->leftChild); tmp->rightChild = copy(t->rightChild); } return tmp; }
以上的这些方法都是利用二叉树的性质递归实现,比较好想清楚,就不做解释了,实在有问题,画画图就会好很多。
3、二叉树的所有方法,测试,及测试结果如下:
(1)、所有关于二叉树的代码:
#ifndef _BIN_TREE_H_ #define _BIN_TREE_H_ #include#include //非递归遍历引入栈 #include //层次遍历引入队列 using namespace std; template //为的是声明友元类,调用BinTreeNode 的私有数据 class BinTree; template //BinTreeNode类 class BinTreeNode{ friend class BinTree ; public: BinTreeNode() : data(Type()), leftChild(NULL), rightChild(NULL){} BinTreeNode(Type value, BinTreeNode *left = NULL, BinTreeNode *right = NULL) : data(value), leftChild(left), rightChild(right){} ~BinTreeNode(){} private: Type data; BinTreeNode *leftChild; BinTreeNode *rightChild; }; /////////////////////////////////////////////////////////////////////////////// template //BinTree类 class BinTree{ public: BinTree() : root(NULL){} BinTree(Type ref) : root(NULL), refval(ref){} BinTree(const BinTree &t){ root = copy(t.root); //调用拷贝方法 } ~BinTree(){ makeEmpty(); //析构函数这里将二叉树置空 root = NULL; } public: //创建二叉树 void createBinTree(); void createBinTree(const char *str); void createBinTree(const char *VLR, const char *LVR, int n); void createBinTree_1(const char *LVR, const char *LRV, int n); public: //递归遍历 void prevOrder()const; void inOrder()const; void endOrder()const; public: //各种方法的声明 int size()const; int height()const; BinTreeNode * root_1()const; //以下的三个方法比较简单,就不在进行调用保护方法了; BinTreeNode * leftChild(BinTreeNode * cur)const; BinTreeNode * rightChild(BinTreeNode * cur)const; BinTreeNode * find(const Type &key)const; BinTreeNode * parent(BinTreeNode * cur)const; void makeEmpty(); bool equal(const BinTree &t)const; BinTreeNode * copy(BinTreeNode *t)const; public: //非递归遍历 void prevOrder_1()const; void inOrder_1()const; void endOrder_1()const; void levelOrder()const; //puublic:供外界提供的接口, //////////////////////////////////////////////////////////////////////////////// protected: //protected:供自己函数内部调用,写保护方法 void prevOrder_1(BinTreeNode * t)const; void inOrder_1(BinTreeNode * t)const; void endOrder_1(BinTreeNode * t)const; void levelOrder(BinTreeNode * t)const; protected: int size(BinTreeNode *t)const; int height(BinTreeNode *t)const; BinTreeNode * find(const Type &key, BinTreeNode *t)const; BinTreeNode * parent(BinTreeNode * cur, BinTreeNode *t)const; void makeEmpty(BinTreeNode * t); bool equal(BinTreeNode *t, BinTreeNode *t1)const; protected: void prevOrder(BinTreeNode *t)const; void inOrder(BinTreeNode *t)const; void endOrder(BinTreeNode *t)const; protected : void createBinTree(BinTreeNode *&t); BinTreeNode * createBinTree_1(); void createBinTree(const char *&str, BinTreeNode *&t); BinTreeNode * createBinTree_1(const char *&str); void createBinTree(BinTreeNode *&t, const char *VLR, const char *LVR, int n); void createBinTree_1(BinTreeNode *&t, const char *LVR, const char *LRV, int n); //以上都只是在类内声明; private: BinTreeNode *root; Type refval; //'#' }; /////////////////////////////////////////////////////////////////////////////// template //类外实现公有方法的调用 void BinTree ::createBinTree(){ //创建二叉树 //createBinTree(root); root = createBinTree_1(); } template void BinTree ::prevOrder()const{ //先序递归遍历 cout<<"先根序如下: "< void BinTree ::inOrder()const{ //中序递归遍历 cout<<"中根序如下: "< void BinTree ::endOrder()const{ //后序递归遍历 cout<<"后根序如下: "< void BinTree ::createBinTree(const char *str){ //创建二叉树 // createBinTree(str, root); root = createBinTree_1(str); } template int BinTree ::size()const{ //求结点个数 return size(root); } template int BinTree ::height()const{ //求树的高度 return height(root); } template BinTreeNode * BinTree ::root_1()const{ //求根节点 return root; } template BinTreeNode * BinTree ::leftChild(BinTreeNode * cur)const{ //求当前结点的左孩子 return cur->leftChild; } template BinTreeNode * BinTree ::rightChild(BinTreeNode * cur)const{ //求当前结点的右孩子 return cur->rightChild; } template BinTreeNode * BinTree ::find(const Type &key)const{ //查找当前结点 return find(key, root); } template BinTreeNode * BinTree ::parent(BinTreeNode * cur)const{ //查找当前结点的父结点 return parent(cur, root); } template void BinTree ::makeEmpty(){ //将二叉树置空 makeEmpty(root); } template bool BinTree ::equal(const BinTree &t)const{ //两个二叉树是否相同的比较 return equal(t.root, root); } template void BinTree ::prevOrder_1()const{ //非递归先序 prevOrder_1(root); } template void BinTree ::inOrder_1()const{ //非递归中序 inOrder_1(root); } template void BinTree ::endOrder_1()const{ //非递归后序 endOrder(root); } template void BinTree ::levelOrder()const{ //层次遍历 levelOrder(root); } template void BinTree ::createBinTree(const char *VLR, const char *LVR, int n){ //创建二叉树 createBinTree(root, VLR, LVR, n); } template void BinTree ::createBinTree_1(const char *LVR, const char *LRV, int n){ //创建二叉树 createBinTree_1(root, LVR, LRV, n); } ////////////////////////////////////////////////////////////////////////////////////////// template //以下的都是写保护的方法,供自己使用 void BinTree ::createBinTree_1(BinTreeNode *&t, const char *LVR, const char *LRV, int n){ //中序和后序创建二叉树 if(n == 0){ t = NULL; return; } int k = 0; while(LVR[k] != LRV[n-1]){ k++; } t = new BinTreeNode (LVR[k]); createBinTree_1(t->rightChild, LVR+k+1, LRV+k, n-k-1); createBinTree_1(t->leftChild, LVR, LRV, k); } template void BinTree ::createBinTree(BinTreeNode *&t, const char *VLR, const char *LVR, int n){ //先序和中序创建二叉树 if(n == 0){ t = NULL; return; } int k = 0; while(LVR[k] != VLR[0]){ k++; } t = new BinTreeNode (LVR[k]); createBinTree(t->leftChild, VLR+1, LVR, k); createBinTree(t->rightChild, VLR+k+1, LVR+k+1, n-k-1); } template void BinTree ::levelOrder(BinTreeNode * t)const{ //层次遍历 queue *> qu; BinTreeNode *p; if(t != NULL){ qu.push(t); while(!qu.empty()){ p = qu.front(); qu.pop(); cout< data<<" "; if(p->leftChild){ qu.push(p->leftChild); } if(p->rightChild){ qu.push(p->rightChild); } } } } typedef enum{L, R}Tag; template class stkNode{ public: stkNode(BinTreeNode *p = NULL) : ptr(p), tag(L){} public: BinTreeNode *ptr; Tag tag; //L R }; template void BinTree ::endOrder_1(BinTreeNode * t)const{ //非递归后序 stkNode n; stack > st; BinTreeNode *p = t; do{ while(p != NULL){ n.ptr = p; n.tar = L; st.push(n); p = p->leftChild; } bool isRun = true; while(isRun && !st.empty()){ n = st.top(); st.pop(); switch(n.tag){ case L: p = n.ptr; n.tag = R; st.push(n); p = p->rightChild; isRun = false; break; case R: cout< data<<" "; break; } } }while(!st.empty());//不用p1=NULL,因为当栈空时,最后一个节点刚好被访问完成。 } template void BinTree ::inOrder_1(BinTreeNode * t)const{ //非递归中序 stack *> st; BinTreeNode *p = t; do{ while(p != NULL){ st.push(p); p = p->leftChild; } if(!st.empty()){ p = st.top(); st.pop(); cout< data<<" "; p = p->rightChild; }//中序遍历时,当root出栈时,此时占空, }while(p != NULL || !st.empty()); //为根的时候右边还要入栈。 } template void BinTree ::prevOrder_1(BinTreeNode * t)const{ //非递归先序 stack *> st; BinTreeNode *tmp; if(t != NULL){ st.push(t); while(!st.empty()){ tmp = st.top(); st.pop(); cout< data<<" "; if(tmp->rightChild){ st.push(tmp->rightChild); } if(tmp->leftChild){ st.push(tmp->leftChild); } } } } template BinTreeNode * BinTree ::copy(BinTreeNode *t)const{ //拷贝函数 BinTreeNode * tmp; if(t == NULL){ return NULL; }else{ tmp = new BinTreeNode (t->data); tmp->leftChild = copy(t->leftChild); tmp->rightChild = copy(t->rightChild); } return tmp; } template bool BinTree ::equal(BinTreeNode *t, BinTreeNode *t1)const{ //两个二叉树是否相同的比较 if(t == NULL && t1 == NULL){ //取反判断与这个是一个道理 return true; } if(t != NULL && t1!= NULL && t->data == t1->data && equal(t->leftChild, t1->leftChild) && equal(t->rightChild, t1->rightChild)){ return true; }else{ return false; } } template void BinTree ::makeEmpty(BinTreeNode *t){ //将二叉树置空 if(t != NULL){ makeEmpty(t->leftChild); makeEmpty(t->rightChild); delete t; } } template BinTreeNode * BinTree ::parent(BinTreeNode * cur, BinTreeNode *t)const{ //查找当前结点的父结点 if(t == NULL || cur == NULL || cur == t){ return NULL; } if(t->leftChild == cur || t->rightChild == cur){ return t; } //思路:利用父的孩子节点和当前节点比较 BinTreeNode *p = parent(cur, t->leftChild); if(p != NULL){ return p; } return parent(cur, t->rightChild); } template BinTreeNode * BinTree ::find(const Type &key, BinTreeNode *t)const{ //查找当前结点 if(t == NULL){ return NULL; } if(t->data == key){ return t; } BinTreeNode *p = find(key, t->leftChild); if(p != NULL){ return p; } return find(key, t->rightChild); } template int BinTree ::height(BinTreeNode *t)const{ //求树的高度 if(t == NULL){ return 0; } int leftHeight = height(t->leftChild); int rightHeight = height(t->rightChild); return (leftHeight > rightHeight ? leftHeight : rightHeight) + 1; } template int BinTree ::size(BinTreeNode *t)const{ //求结点个数 if(t == NULL){ return 0; } return size(t->leftChild) + size(t->rightChild) + 1; } template BinTreeNode * BinTree ::createBinTree_1(const char *&str){ //创建二叉树 BinTreeNode *t; if(refval == *str){ t = NULL; }else{ t = new BinTreeNode (*str); t->leftChild = createBinTree_1(++str); t->rightChild = createBinTree_1(++str); } return t; } template void BinTree ::createBinTree(const char *&str, BinTreeNode *&t){ //创建二叉树 if(*str == refval){ t = NULL; }else{ t = new BinTreeNode (*str); createBinTree(++str, t->leftChild); //前加,后加不一样!!!在这里,就是传引用,保证每次字符串都是往后走的 createBinTree(++str, t->rightChild); } } template BinTreeNode * BinTree ::createBinTree_1(){ //创建二叉树 Type createData; cin>>createData; BinTreeNode *t; if(refval == createData){ t = NULL; }else{ t = new BinTreeNode (createData); t->leftChild = createBinTree_1(); t->rightChild = createBinTree_1(); } return t; } template void BinTree ::endOrder(BinTreeNode *t)const{ //后序递归遍历 if(t == NULL){ return; }else{ endOrder(t->leftChild); endOrder(t->rightChild); cout< data<<" "; } } template void BinTree ::inOrder(BinTreeNode *t)const{ //中序递归遍历 if(t == NULL){ return; }else{ inOrder(t->leftChild); cout< data<<" "; inOrder(t->rightChild); } } template void BinTree ::prevOrder(BinTreeNode *t)const{ //先序递归遍历 if(t == NULL){ return; }else{ cout< data<<" "; prevOrder(t->leftChild); prevOrder(t->rightChild); } } //根据先根序创建二叉树 template void BinTree ::createBinTree(BinTreeNode *&t){ //创建二叉树 Type createData; cin>>createData; if(refval == createData){ t = NULL; }else{ t = new BinTreeNode (createData); createBinTree(t->leftChild); createBinTree(t->rightChild); } } #endif
以上代码我采用折叠的方式进行写的。类外公有调用下面紧跟保护方法的实现;
(2)、测试代码
#include"BinTree.h" //ABC##DE##F##G#H## /* 先根序如下: A B C D E F G H 中根序如下: C B E D F A G H 后根序如下: C E F D B H G A */ int main(void){ // char *VLR = "ABCDEFGH"; // char *LVR = "CBEDFAGH"; // char *LRV = "CEFDBHGA"; // BinTreebt; //对象初始化不写'#'; // int n = strlen(VLR); // bt.createBinTree(VLR, LVR, n); //在这里创建二叉树不用'#'结束,因为是由先序和中序创建,不看结束标志'#'; // bt.createBinTree_1(LVR, LRV, n); // bt.prevOrder(); // cout< bt('#'); char *str = "ABC##DE##F##G#H##"; // char *str = "ABC##DE###G#H##"; bt.createBinTree(str); BinTree bt1(bt); bt1.levelOrder(); cout< bt('#'); BinTree bt1('#'); char *str = "ABC##DE##F##G#H##"; bt.createBinTree(str); bt1.createBinTree(str); //构建的是一颗空树,引用传递构建,原先字符串已经为空! if(bt.equal(bt1)){ cout<<"相等"< bt('#'); char *str = "ABC##DE##F##G#H##"; bt.createBinTree(str); cout< *p = bt.find('H'); BinTreeNode *t = bt.find('G'); printf("%p\n", t); BinTreeNode *q = bt.parent(p); printf("%p\n", q); bt.prevOrder(); cout< 这是所有测试要用的代码,在编写时,写一个方法测试一个,将测试过的就注释起来了;
(3)、部分测试结果
至于其它的测试结果就不在给出了,有兴趣可以在测测其它的方法。
标题名称:二叉树之方法实现
路径分享:http://cqcxhl.cn/article/jhihhi.html