重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

GWAS分析中协变量的处理是怎样的

本篇文章为大家展示了GWAS分析中协变量的处理是怎样的,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

创新互联是网站建设技术企业,为成都企业提供专业的网站设计、成都网站制作,网站设计,网站制作,网站改版等技术服务。拥有十多年丰富建站经验和众多成功案例,为您定制适合企业的网站。十多年品质,值得信赖!

1. 背景

在回归分析时,有时候我们需要知道每个因子每个水平的回归系数,这样就需要将因子转化为虚拟变量,R语言中有model.matrix进行转换,但是只能一个转换一个因子,这里我们用R包useful,可以支持多个因子同时转换。

 

2. 示例数据

Herd <- c(1,1,2,2,2,3,3,3,3)
Year = c(rep(c(2018,2019),each=4),2020)
Sire <- c("ZA","AD","BB","AD","AD","CC","CC","AD","AD")
Yield <- c(110,100,110,100,100,110,110,100,100)
dat <- data.frame(Herd,Year,Sire,Yield)
dat$Herd <- as.factor(dat$Herd)
dat$Year <- as.factor(dat$Year)
dat
 

GWAS分析中协变量的处理是怎样的这里,Herd,Year,Sire都是因子,如果在构建矩阵时,需要转化为虚拟变量。

 

3. R中model.matrix转化方法

一个因子,一个因子的转化,然后进行合并:

X1 = model.matrix(~Herd-1,data=dat)
X1

X2 = model.matrix(~Year-1,data=dat)
X2

X = cbind(X1,X2)
X
 
GWAS分析中协变量的处理是怎样的  
 

4. 更简单的方法

# 简单的方法
# install.packages("useful") # 如果没有安装useful这个包,运行这行命令进行安装。
library(useful)
build.x(~Herd+Year-1,data=dat,contrasts = F)
 
GWAS分析中协变量的处理是怎样的  
 

5. 全部代码

# 示例数据
Herd <- c(1,1,2,2,2,3,3,3,3)
Year = c(rep(c(2018,2019),each=4),2020)
Sire <- c("ZA","AD","BB","AD","AD","CC","CC","AD","AD")
Yield <- c(110,100,110,100,100,110,110,100,100)
dat <- data.frame(Herd,Year,Sire,Yield)
dat$Herd <- as.factor(dat$Herd)
dat$Year <- as.factor(dat$Year)
dat


# R中model.matrix
X1 = model.matrix(~Herd-1,data=dat)
X1

X2 = model.matrix(~Year-1,data=dat)
X2

X = cbind(X1,X2)
X


# 简单的方法
library(useful)
build.x(~Herd+Year-1,data=dat,contrasts = F)

上述内容就是GWAS分析中协变量的处理是怎样的,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。


网页题目:GWAS分析中协变量的处理是怎样的
本文网址:http://cqcxhl.cn/article/jjsdid.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP