重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

使用springbootjpa怎么实现分库分表项目

使用springboot jpa怎么实现分库分表项目?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

创新互联是专业的秦皇岛网站建设公司,秦皇岛接单;提供成都网站设计、网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行秦皇岛网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

分库分表场景

关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。

分库分表用于应对当前互联网常见的两个场景——大数据量和高并发。通常分为垂直拆分和水平拆分两种。

垂直拆分是根据业务将一个库(表)拆分为多个库(表)。如:将经常和不常访问的字段拆分至不同的库或表中。由于与业务关系密切,目前的分库分表产品均使用水平拆分方式。

水平拆分则是根据分片算法将一个库(表)拆分为多个库(表)。如:按照ID的最后一位以3取余,尾数是1的放入第1个库(表),尾数是2的放入第2个库(表)等。

单纯的分表虽然可以解决数据量过大导致检索变慢的问题,但无法解决过多并发请求访问同一个库,导致数据库响应变慢的问题。所以通常水平拆分都至少要采用分库的方式,用于一并解决大数据量和高并发的问题。这也是部分开源的分片数据库中间件只支持分库的原因。

但分表也有不可替代的适用场景。最常见的分表需求是事务问题。同在一个库则不需考虑分布式事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。目前强一致性的分布式事务由于性能问题,导致使用起来并不一定比不分库分表快。目前采用最终一致性的柔性事务居多。分表的另一个存在的理由是,过多的数据库实例不利于运维管理。综上所述,最佳实践是合理地配合使用分库+分表。

Sharding-JDBC简介

Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问。Sharding-JDBC是继dubbox和elastic-job之后,ddframe系列开源的第3个项目。

定位为轻量级Java框架,在Java的JDBC层提供的额外服务。 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。

  • 适用于任何基于Java的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。

  • 基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP等。

  • 支持任意实现JDBC规范的数据库。目前支持MySQL,Oracle,SQLServer和PostgreSQL。

  • Sharding-JDBC分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。

SQL解析功能完善,支持聚合、分组、排序、limit、or等查询,并支持Binding Table以及笛卡尔积表查询。

项目实践

数据准备

准备两个数据库。并在两个库中建好表, 建表sql如下:

DROP TABLE IF EXISTS `user_auth_0`;
CREATE TABLE `user_auth_0` (
 `user_id` bigint(20) NOT NULL,
 `add_date` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `email` varchar(16) DEFAULT NULL,
 `password` varchar(255) DEFAULT NULL,
 `phone` varchar(16) DEFAULT NULL,
 `remark` varchar(16) DEFAULT NULL,
 PRIMARY KEY (`user_id`),
 UNIQUE KEY `USER_AUTH_PHONE` (`phone`),
 UNIQUE KEY `USER_AUTH_EMAIL` (`email`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
 
 
DROP TABLE IF EXISTS `user_auth_1`;
CREATE TABLE `user_auth_1` (
 `user_id` bigint(20) NOT NULL,
 `add_date` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `email` varchar(16) DEFAULT NULL,
 `password` varchar(255) DEFAULT NULL,
 `phone` varchar(16) DEFAULT NULL,
 `remark` varchar(16) DEFAULT NULL,
 PRIMARY KEY (`user_id`),
 UNIQUE KEY `USER_AUTH_PHONE` (`phone`),
 UNIQUE KEY `USER_AUTH_EMAIL` (`email`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

POM配置


      org.springframework.boot
      spring-boot-starter
    
    
      org.springframework.boot
      spring-boot-devtools
      runtime
    
    
      org.projectlombok
      lombok
      true
    
    
      org.springframework.boot
      spring-boot-starter-test
      test
    

    
      org.springframework.boot
      spring-boot-starter-web
    

    
    
      org.springframework.boot
      spring-boot-starter-data-jpa
    
    
    
      mysql
      mysql-connector-java
    
    
    
      com.alibaba
      druid
      1.1.9
    
    
    
      com.dangdang
      sharding-jdbc-core
      1.5.4
    
    
    
      com.alibaba
      fastjson
      1.2.51
    

application.yml配置

spring:
 jpa:
  properties:
   hibernate:
    dialect: org.hibernate.dialect.MySQL5InnoDBDialect
  show-sql: true
database0:
 driverClassName: com.mysql.jdbc.Driver
 url: jdbc:mysql://localhost:3306/mazhq?serverTimezone=UTC&useUnicode=true&characterEncoding=utf-8
 username: root
 password: 123456
 databaseName: mazhq

database1:
 driverClassName: com.mysql.jdbc.Driver
 url: jdbc:mysql://localhost:3306/liugh?serverTimezone=UTC&useUnicode=true&characterEncoding=utf-8
 username: root
 password: 123456
 databaseName: liugh

分库分表最主要有几个配置

1. 有多少个数据源 (2个:database0和database1)

@Data
@ConfigurationProperties(prefix = "database0")
@Component
public class Database0Config {
  private String url;
  private String username;
  private String password;
  private String driverClassName;
  private String databaseName;
 
  public DataSource createDataSource() {
    DruidDataSource result = new DruidDataSource();
    result.setDriverClassName(getDriverClassName());
    result.setUrl(getUrl());
    result.setUsername(getUsername());
    result.setPassword(getPassword());
    return result;
  }
}

2. 用什么列进行分库以及分库算法 (一般是用具体值对2取余判断入哪个库,我采用的是判断值是否大于20)

@Component
public class DatabaseShardingAlgorithm implements SingleKeyDatabaseShardingAlgorithm {
  @Autowired
  private Database0Config database0Config;
  @Autowired
  private Database1Config database1Config;
  @Override
  public String doEqualSharding(Collection collection, ShardingValue shardingValue) {
    Long value = shardingValue.getValue();
    if (value <= 20L) {
      return database0Config.getDatabaseName();
    } else {
      return database1Config.getDatabaseName();
    }
  }
 
  @Override
  public Collection doInSharding(Collection availableTargetNames, ShardingValue shardingValue) {
    Collection result = new LinkedHashSet<>(availableTargetNames.size());
    for (Long value : shardingValue.getValues()) {
      if (value <= 20L) {
        result.add(database0Config.getDatabaseName());
      } else {
        result.add(database1Config.getDatabaseName());
      }
    }
    return result;
  }
 
  @Override
  public Collection doBetweenSharding(Collection availableTargetNames, ShardingValue shardingValue) {
    Collection result = new LinkedHashSet<>(availableTargetNames.size());
    Range range = shardingValue.getValueRange();
    for (Long value = range.lowerEndpoint(); value <= range.upperEndpoint(); value++) {
      if (value <= 20L) {
        result.add(database0Config.getDatabaseName());
      } else {
        result.add(database1Config.getDatabaseName());
      }
    }
    return result;
  }
}

3. 用什么列进行分表以及分表算法

@Component
public class TableShardingAlgorithm implements SingleKeyTableShardingAlgorithm {
  @Override
  public String doEqualSharding(Collection tableNames, ShardingValue shardingValue) {
    for (String each : tableNames) {
      if (each.endsWith(shardingValue.getValue() % 2 + "")) {
        return each;
      }
    }
    throw new IllegalArgumentException();
  }
 
  @Override
  public Collection doInSharding(Collection tableNames, ShardingValue shardingValue) {
    Collection result = new LinkedHashSet<>(tableNames.size());
    for (Long value : shardingValue.getValues()) {
      for (String tableName : tableNames) {
        if (tableName.endsWith(value % 2 + "")) {
          result.add(tableName);
        }
      }
    }
    return result;
  }
 
  @Override
  public Collection doBetweenSharding(Collection tableNames, ShardingValue shardingValue) {
    Collection result = new LinkedHashSet<>(tableNames.size());
    Range range = shardingValue.getValueRange();
    for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
      for (String each : tableNames) {
        if (each.endsWith(i % 2 + "")) {
          result.add(each);
        }
      }
    }
    return result;
  }
}

4. 每张表的逻辑表名和所有物理表名和集成调用

@Configuration
public class DataSourceConfig {
  @Autowired
  private Database0Config database0Config;
 
  @Autowired
  private Database1Config database1Config;
 
  @Autowired
  private DatabaseShardingAlgorithm databaseShardingAlgorithm;
 
  @Autowired
  private TableShardingAlgorithm tableShardingAlgorithm;
 
  @Bean
  public DataSource getDataSource() throws SQLException {
    return buildDataSource();
  }
 
  private DataSource buildDataSource() throws SQLException {
    //分库设置
    Map dataSourceMap = new HashMap<>(2);
    //添加两个数据库database0和database1
    dataSourceMap.put(database0Config.getDatabaseName(), database0Config.createDataSource());
    dataSourceMap.put(database1Config.getDatabaseName(), database1Config.createDataSource());
    //设置默认数据库
    DataSourceRule dataSourceRule = new DataSourceRule(dataSourceMap, database0Config.getDatabaseName());
 
    //分表设置,大致思想就是将查询虚拟表Goods根据一定规则映射到真实表中去
    TableRule orderTableRule = TableRule.builder("user_auth")
        .actualTables(Arrays.asList("user_auth_0", "user_auth_1"))
        .dataSourceRule(dataSourceRule)
        .build();
 
    //分库分表策略
    ShardingRule shardingRule = ShardingRule.builder()
        .dataSourceRule(dataSourceRule)
        .tableRules(Arrays.asList(orderTableRule))
        .databaseShardingStrategy(new DatabaseShardingStrategy("user_id", databaseShardingAlgorithm))
        .tableShardingStrategy(new TableShardingStrategy("user_id", tableShardingAlgorithm)).build();
    DataSource dataSource = ShardingDataSourceFactory.createDataSource(shardingRule);
    return dataSource;
  }
  @Bean
  public KeyGenerator keyGenerator() {
    return new DefaultKeyGenerator();
  }

接口测试代码

1、实体类

/**
 * @author mazhq
 * @date 2019/7/30 16:41
 */
@Entity
@Data
@Table(name = "USER_AUTH", uniqueConstraints = {@UniqueConstraint(name = "USER_AUTH_PHONE", columnNames = {"PHONE"}),
@UniqueConstraint(name = "USER_AUTH_EMAIL", columnNames = {"EMAIL"})})
public class UserAuthEntity implements Serializable {
  private static final long serialVersionUID = 7230052310725727465L;
  @Id
  private Long userId;
  @Column(name = "PHONE", length = 16)
  private String phone;
  @Column(name = "EMAIL", length = 16)
  private String email;
  private String password;
  @Column(name = "REMARK",length = 16)
  private String remark;
  @Column(name = "ADD_DATE", nullable = false, columnDefinition = "datetime default now()")
  private Date addDate;
}

2. Dao层

@Repository
public interface UserAuthDao extends JpaRepository {
}

3. controller层

/**
 * @author mazhq
 * @Title: UserAuthController
 * @date 2019/8/1 17:18
 */
@RestController
@RequestMapping("/user")
public class UserAuthController {
  @Autowired
  private UserAuthDao userAuthDao;
 
  @PostMapping("/save")
  public String save(){
    for (int i=0;i<40;i++) {
      UserAuthEntity userAuthEntity = new UserAuthEntity();
      userAuthEntity.setUserId((long)i);
      userAuthEntity.setAddDate(new Date());
      userAuthEntity.setEmail("test"+i+"@163.com");
      userAuthEntity.setPassword("123456");
      userAuthEntity.setPhone("1388888888"+i);
      Random r = new Random();
      userAuthEntity.setRemark(""+r.nextInt(100));
      userAuthDao.save(userAuthEntity);
    }
    return "success";
  }
 
  @PostMapping("/select")
  public String select(){
    return JSONObject.toJSONString(userAuthDao.findAll(Sort.by(Sort.Order.desc("remark"))));
  }
}  

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联的支持。


当前题目:使用springbootjpa怎么实现分库分表项目
路径分享:http://cqcxhl.cn/article/joidsd.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP