重庆分公司,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Prometheus时序数据库中怎么查询数据

今天就跟大家聊聊有关Prometheus时序数据库中怎么查询数据,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

公司主营业务:成都做网站、成都网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联推出冠县免费做网站回馈大家。

Promql

一个Promql表达式可以计算为下面四种类型:

瞬时向量(Instant Vector) - 一组同样时间戳的时间序列(取自不同的时间序列,例如不同机器同一时间的CPU idle) 区间向量(Range vector) - 一组在一段时间范围内的时间序列 标量(Scalar) - 一个浮点型的数据值 字符串(String) - 一个简单的字符串

我们还可以在Promql中使用svm/avg等集合表达式,不过只能用在瞬时向量(Instant  Vector)上面。为了阐述Prometheus的聚合计算以及篇幅原因,笔者在本篇文章只详细分析瞬时向量(Instant Vector)的执行过程。

瞬时向量(Instant Vector)

前面说到,瞬时向量是一组拥有同样时间戳的时间序列。但是实际过程中,我们对不同Endpoint采样的时间是不可能精确一致的。所以,Prometheus采取了距离指定时间戳之前最近的数据(Sample)。如下图所示:

Prometheus时序数据库中怎么查询数据

当然,如果是距离当前时间戳1个小时的数据直观看来肯定不能纳入到我们的返回结果里面。

所以Prometheus通过一个指定的时间窗口来过滤数据(通过启动参数—query.lookback-delta指定,默认5min)。

对一条简单的Promql进行分析

好了,解释完Instant Vector概念之后,我们可以着手进行分析了。直接上一条带有聚合函数的Promql吧。

SUM BY (group) (http_requests{job="api-server",group="production"})

首先,对于这种有语法结构的语句肯定是将其Parse一把,构造成AST树了。调用

promql.ParseExpr

由于Promql较为简单,所以Prometheus直接采用了LL语法分析。在这里直接给出上述Promql的AST树结构。

Prometheus时序数据库中怎么查询数据

Prometheus对于语法树的遍历过程都是通过vistor模式,具体到代码为:

ast.go vistor设计模式 func Walk(v Visitor, node Node, path []Node) error {     var err error     if v, err = v.Visit(node, path); v == nil || err != nil {         return err     }     path = append(path, node)      for _, e := range Children(node) {         if err := Walk(v, e, path); err != nil {             return err         }     }      _, err = v.Visit(nil, nil)     return err } func (f inspector) Visit(node Node, path []Node) (Visitor, error) {     if err := f(node, path); err != nil {         return nil, err     }      return f, nil }

通过golang里非常方便的函数式功能,直接传递求值函数inspector进行不同情况下的求值。

type inspector func(Node, []Node) error

求值过程

具体的求值过程核心函数为:

func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *EvalStmt) (Value, storage.Warnings, error) {     ......     querier, warnings, err := ng.populateSeries(ctxPrepare, query.queryable, s)     // 这边拿到对应序列的数据     ......     val, err := evaluator.Eval(s.Expr) // here 聚合计算     ......  }

populateSeries

首先通过populateSeries的计算出VectorSelector Node所对应的series(时间序列)。这里直接给出求值函数

func(node Node, path []Node) error {     ......     querier, err := q.Querier(ctx, timestamp.FromTime(mint), timestamp.FromTime(s.End))     ......     case *VectorSelector:         .......         set, wrn, err = querier.Select(params, n.LabelMatchers...)         ......         n.unexpandedSeriesSet = set     ......     case *MatrixSelector:         ...... } return nil

可以看到这个求值函数,只对VectorSelector/MatrixSelector进行操作,针对我们的Promql也就是只对叶子节点VectorSelector有效。

Prometheus时序数据库中怎么查询数据

select

获取对应数据的核心函数就在querier.Select。我们先来看下qurier是如何得到的.

querier, err := q.Querier(ctx, timestamp.FromTime(mint), timestamp.FromTime(s.End))

根据时间戳范围去生成querier,里面最重要的就是计算出哪些block在这个时间范围内,并将他们附着到querier里面。具体见函数

func (db *DB) Querier(mint, maxt int64) (Querier, error) {     for _, b := range db.blocks {         ......         // 遍历blocks挑选block     }     // 如果maxt>head.mint(即内存中的block),那么也加入到里面querier里面。     if maxt >= db.head.MinTime() {         blocks = append(blocks, &rangeHead{             head: db.head,             mint: mint,             maxt: maxt,         })     }     ...... }

Prometheus时序数据库中怎么查询数据

知道数据在哪些block里面,我们就可以着手进行计算VectorSelector的数据了。

// labelMatchers {job:api-server} {__name__:http_requests} {group:production}  querier.Select(params, n.LabelMatchers...)

有了matchers我们很容易的就能够通过倒排索引取到对应的series。为了篇幅起见,我们假设数据都在headBlock(也就是内存里面)。那么我们对于倒排的计算就如下图所示:

Prometheus时序数据库中怎么查询数据

这样,我们的VectorSelector节点就已经有了最终的数据存储地址信息了,例如图中的memSeries refId=3和4。

Prometheus时序数据库中怎么查询数据


如果想了解在磁盘中的数据寻址,可以详见笔者之前的博客

<>

通过populateSeries找到对应的数据,那么我们就可以通过evaluator.Eval获取最终的结果了。计算采用后序遍历,等下层节点返回数据后才开始上层节点的计算。那么很自然的,我们先计算VectorSelector。

func (ev *evaluator) eval(expr Expr) Value {     ......     case *VectorSelector:     // 通过refId拿到对应的Series     checkForSeriesSetExpansion(ev.ctx, e)     // 遍历所有的series     for i, s := range e.series {         // 由于我们这边考虑的是instant query,所以只循环一次         for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {             // 获取距离ts最近且小于ts的最近的sample             _, v, ok := ev.vectorSelectorSingle(it, e, ts)             if ok {                     if ev.currentSamples < ev.maxSamples {                         // 注意,这边的v对应的原始t被替换成了ts,也就是instant query timeStamp                         ss.Points = append(ss.Points, Point{V: v, T: ts})                         ev.currentSamples++                     } else {                         ev.error(ErrTooManySamples(env))                     }                 }             ......         }     } }

如代码注释中看到,当我们找到一个距离ts最近切小于ts的sample时候,只用这个sample的value,其时间戳则用ts(Instant  Query指定的时间戳)代替。

其中vectorSelectorSingle值得我们观察一下:

func (ev *evaluator) vectorSelectorSingle(it *storage.BufferedSeriesIterator, node *VectorSelector, ts int64) (int64, float64, bool){     ......     // 这一步是获取>=refTime的数据,也就是我们instant query传入的     ok := it.Seek(refTime)     ......         if !ok || t > refTime {          // 由于我们需要的是<=refTime的数据,所以这边回退一格,由于同一memSeries同一时间的数据只有一条,所以回退的数据肯定是<=refTime的         t, v, ok = it.PeekBack(1)         if !ok || t < refTime-durationMilliseconds(LookbackDelta) {             return 0, 0, false         }     } }

就这样,我们找到了series 3和4距离Instant  Query时间最近且小于这个时间的两条记录,并保留了记录的标签。这样,我们就可以在上层进行聚合。

Prometheus时序数据库中怎么查询数据

SUM by聚合

叶子节点VectorSelector得到了对应的数据后,我们就可以对上层节点AggregateExpr进行聚合计算了。代码栈为:

evaluator.rangeEval     |->evaluate.eval.func2         |->evelator.aggregation grouping key为group

具体的函数如下图所示:

func (ev *evaluator) aggregation(op ItemType, grouping []string, without bool, param interface{}, vec Vector, enh *EvalNodeHelper) Vector {     ......     // 对所有的sample     for _, s := range vec {         metric := s.Metric         ......         group, ok := result[groupingKey]          // 如果此group不存在,则新加一个group         if !ok {             ......             result[groupingKey] = &groupedAggregation{                 labels:     m, // 在这里我们的m=[group:production]                 value:      s.V,                 mean:       s.V,                 groupCount: 1,             }             ......         }         switch op {         // 这边就是对SUM的最终处理         case SUM:             group.value += s.V         .....         }     }     .....     for _, aggr := range result {         enh.out = append(enh.out, Sample{         Metric: aggr.labels,         Point:  Point{V: aggr.value},         })     }     ......     return enh.out }

好了,有了上面的处理,我们聚合的结果就变为:

Prometheus时序数据库中怎么查询数据

看完上述内容,你们对Prometheus时序数据库中怎么查询数据有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。


网站名称:Prometheus时序数据库中怎么查询数据
转载源于:http://cqcxhl.cn/article/jshoee.html

其他资讯

在线咨询
服务热线
服务热线:028-86922220
TOP