重庆分公司,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章将为大家详细讲解有关python中Bellman-Ford算法有什么用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
成都创新互联作为成都网站建设公司,专注网站建设、网站设计,有关企业网站设计方案、改版、费用等问题,行业涉及成都会所设计等多个领域,已为上千家企业服务,得到了客户的尊重与认可。
说明
1、Bellman-Ford算法是包含负权图的单源最短路径算法。
算法原理是对图进行V-1放松操作,获得所有可能的最短路径。
2、Bellman-Ford算法可以处理负面边缘。它的基本操作扩展是在深度上搜索,而放松操作是在广度上搜索。
它可以在不影响结果的情况下操作负面边缘。
Bellman-Ford算法效率低,时间复杂度高达o(V*E),v、e分别为顶点和边数。SPFA是Bellman-Ford的队列优化,通过维护队列可以大幅度减少重复计算,时间复杂度为o(k*E)。
实例
def bellman_ford( graph, source ): distance = {} parent = {} for node in graph: distance[node] = float( 'Inf' ) parent[node] = None distance[source] = 0 for i in range( len( graph ) - 1 ): for from_node in graph: for to_node in graph[from_node]: if distance[to_node] > graph[from_node][to_node] + distance[from_node]: distance[to_node] = graph[from_node][to_node] + distance[from_node] parent[to_node] = from_node for from_node in graph: for to_node in graph[from_node]: if distance[to_node] > distance[from_node] + graph[from_node][to_node]: return None, None return distance, parent def test(): graph = { 'a': {'b': -1, 'c': 4}, 'b': {'c': 3, 'd': 2, 'e': 2}, 'c': {}, 'd': {'b': 1, 'c': 5}, 'e': {'d': -3} } distance, parent = bellman_ford( graph, 'a' ) print distance print parent if __name__ == '__main__': test()
关于“python中Bellman-Ford算法有什么用”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。